
The Serial Equivalence of

Intel® Cilk™ Plus

Robert Geva

Parallel Programming Architect

SSG/DPD

1

Software and Services Group

Reminder: 3 keywords

int fib(int n)

{

 if (n < 2) return n;

 else {

 int x,y;

 x = cilk_spawn fib(n-1);

 y = fib(n-2);

 cilk_sync;

 return x+y;

 }

}

cilk_for (int i = 0; i < max_row; i++) {

 for (int j = 0; j < max_col; j++) {

 p[i][j] = mandel(complex(scale(i), scale(j)));

}}

• Spawn a function call

• Sync all child tasks from

the same spawning func

• Parallel loop, loop is countable

Serial Elision

• The serial elision of a Cilk program is well defined:
– The C/C++ program derived from the Cilk program by

 cilk_spawn  white space

 cilk_sync  white space

 cilk_for  for

• The serial elision of a cilk program is a well formed
serial program in C/C++

• A deterministic Cilk program on a single thread behaves
the same as its elision

• A cilk program w/o determinacy race behaves the same
as its serial elision when running on any number of
threads

• For most library solutions (e.g. TBB, PPL), an equivalent
property is not well defined

• For OpenMP, the equivalent property does not hold

3

Software and Services Group

Real-world example: Collision Detection

3

Pickup

Truck

Body Chassis Engine
Drive

Train

Cab Doors Flatbed

Goal: Find all “collisions” between an assembly and a target object.

Hyper Objects enable a parallel implementation

with serial semantics

4

Software and Services Group 4

std::list<Node *>output_list;

void walk(Node &x, Node &target)) {

 if (x.is_internal())

 {

 cilk_for(Node::iterator child = x.begin();

 child != x.end();

 ++child) {

 walk(child, target);

 }

 }

 else

 if (target.collides_with(x))

 output_list.push_back(x);

}

Parallel update of
list is a Data
Race!

 Collision Detection, 1

In parallel, traverse tree

At leaf, collect collisions

Data races are almost always bugs

5

Software and Services Group 5

std::list<Node *>output_list;

void walk(Node &x, Node &target)) {

 if (x.is_internal())

 {

 cilk_for(Node::iterator child = x.begin();

 child != x.end();

 ++child) {

 walk(child, target);

 }

 }

 else

 if (target.collides_with(x))

 {

 m.lock();

 output_list.push_back(x);

 m.unlock();

 }

}

Add lock

•Poor performance

•Order not deterministic.

 Collision Detection, 2

In parallel, traverse tree

At leaf, collect collisions

Locks create serial bottlenecks

6

Software and Services Group

cilk::reducer_list_append<Node *>output_list;

void walk(Node &x, Node &target)) {

 if (x.is_internal())

 {

 cilk_for(Node::iterator child = x.begin();

 child != x.end();

 ++child) {

 walk(child, target);

 }

 }

 else

 if (target.collides_with(x))

 output_list.push_back(x);

}

6

Change list to hyper-
object

•Good performance. Serial
order!

 Collision Detection, 3

In parallel, traverse tree

At leaf, collect collisions

serial semantics: guaranteed order of nodes in resulting list

7

Software and Services Group

Language  serial equivalence

1. Parent Stealing

1. Spawned child is always scheduled before the

continuation

2. Same order as in the serial execution

2. Arguments evaluated by parent

1. Side effects are available to the parent

2. No opportunity to create data races between

the evaluaiton of the arguments to the same

spawned function

3. Implicit sync Structured fork – join

parallelism

1. The parents stack is always available while

child is executing,

2. In particular when the parent passes a stack address

to the child

int fib(int n)

{

 if (n < 2) return n;

 else {

 int x,y;

 x = cilk_spawn fib(n-1);

 y = fib(n-2);

 cilk_sync;

 return x+y;

 }

}

Cilk_spawn fib (--n);

Cilk_spawn f(g(x),h(y));

8

Software and Services Group

Legal Disclaimer
• INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE,

EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED
BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL® PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR
USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

• Intel may make changes to specifications and product descriptions at any time, without notice.

• All products, dates, and figures specified are preliminary based on current expectations, and are subject to
change without notice.

• Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which
may cause the product to deviate from published specifications. Current characterized errata are available
on request.

• Nehalem, Westmere, Sandy Bridge and other code names featured are used internally within Intel to
identify products that are in development and not yet publicly announced for release. Customers, licensees
and other third parties are not authorized by Intel to use code names in advertising, promotion or marketing
of any product or services and any such use of Intel's internal code names is at the sole risk of the user

• Performance tests and ratings are measured using specific computer systems and/or components and
reflect the approximate performance of Intel products as measured by those tests. Any difference in
system hardware or software design or configuration may affect actual performance.

• Intel, Core, Itanium and the Intel logo are trademarks of Intel Corporation in the United States and other
countries.

• *Other names and brands may be claimed as the property of others.

• Copyright © 2010 Intel Corporation.

9

Software and Services Group

Optimization Notice

4/23/2012 9

Intel® Composer XE 2011 includes compiler options that optimize for instruction sets that
are available in both Intel® and non-Intel microprocessors (for example SIMD instruction
sets), but do not optimize equally for non-Intel microprocessors. In addition, certain
compiler options for Intel® Composer XE 2011 are reserved for Intel microprocessors. For a
detailed description of these compiler options, including the instruction sets they implicate,
please refer to "Intel® Composer XE 2011 Documentation > Intel® C++ Compiler 12.0 User
and Reference Guides > Compiler Options." Many library routines that are part of Intel®
Composer XE 2011 are more highly optimized for Intel microprocessors than for other
microprocessors. While the compilers and libraries in Intel® Composer XE 2011 offer
optimizations for both Intel and Intel-compatible microprocessors, depending on the options
you select, your code and other factors, you likely will get extra performance on Intel
microprocessors.

While the paragraph above describes the basic optimization approach for Intel® Composer
XE 2011, with respect to Intel's compilers and associated libraries as a whole, Intel®
Composer XE 2011 may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include Intel® Streaming SIMD Extensions 2 (Intel® SSE2), Intel® Streaming
SIMD Extensions 3 (Intel® SSE3), and Supplemental Streaming SIMD Extensions 3 (Intel®
SSSE3) instruction sets and other optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on microprocessors not manufactured
by Intel. Microprocessor-dependent optimizations in this product are intended for use with
Intel microprocessors.

Intel recommends that you evaluate other compilers to determine which best meet your
requirements.

