
Serial Equivalence’s
Impact on Space Bounds.

Arch D. Robison

SSG/DPD

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

2

May 2012

Quicksort Example

Key to efficient

implementation of Quicksort

is semi-recursion.
• Recurse on smaller subproblem

• Iterate (tail-call) on bigger

subproblem.

Worst-case bounds for serial

execution:

• Recursion depth  lg n.

• Iteration count  n-1.

Cilk translation is trivial
• Spawn the recursive call

• Additional space = O(P lg n)

void parallel_quicksort(T* first, T* last) {

 while(last-first>QUICKSORT_CUTOFF) {

 // Divide

 T* middle = divide(first,last);

 if(!middle) return;

 // Now have two subproblems: [first..middle) and (middle..last)

 if(middle-first < last-(middle+1)) {

 // Left problem [first..middle) is smaller, so spawn it.

 cilk_spawn parallel_quicksort(first, middle);

 // Solve right subproblem in next iteration.

 first = middle+1;

 } else {

 // Right problem (middle..last) is smaller, so spawn it.

 cilk_spawn parallel_quicksort(middle+1, last);

 // Solve left subproblem in next iteration.

 last = middle;

 }

 }

 // Base case

 std::sort(first,last);

}

Familiar practices
for avoiding space
blowup still work.

Serial equivalence’s impact on space bounds

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

3

May 2012

Impact of Breaking

Serial Semantics

In worst case, loop creates n-1

tasks before executing any of

them.
• Serial version never did this.

• Additional space now O(n) instead of

O(P lg n)

• Throttle mechanisms can offer some

relief, but effect on space and

parallelism can be hard to predict.

void parallel_quicksort(T* first, T* last) {

 task_group g;

 while(last-first>QUICKSORT_CUTOFF) {

 // Divide

 T* middle = divide(first,last);

 if(!middle) {

 g.wait();

 return;

 }

 // Now have two subproblems: [first..middle) and (middle..last)

 if(middle-first < last-(middle+1)) {

 // Left problem [first..middle) is smaller, so spawn it.

 g.run([=]{quicksort(first, middle);});

 // Solve right subproblem in next iteration.

 first = middle+1;

 } else {

 // Right problem (middle..last) is smaller, so spawn it.

 g.run([=]{quicksort(middle+1, last);});

 // Solve left subproblem in next iteration.

 last = middle;

 }

 }

 // Base case

 std::sort(first,last);

 g.wait();

}

Familiar practices
for avoiding space
blowup may break.

Thanks

4

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on
Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products.

Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and Cilk
are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Legal Disclaimer & Optimization Notice

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

5

