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Quicksort Example 

Key to efficient 

implementation of Quicksort 

is semi-recursion. 
• Recurse on smaller subproblem 

• Iterate (tail-call) on bigger 

subproblem. 

Worst-case bounds for serial 

execution: 

• Recursion depth  lg n. 

• Iteration count  n-1. 

Cilk translation is trivial 
• Spawn the recursive call 

• Additional space = O(P lg n) 

void parallel_quicksort( T* first, T* last ) { 

    while( last-first>QUICKSORT_CUTOFF ) { 

        // Divide 

        T* middle = divide(first,last); 

        if( !middle ) return; 

        // Now have two subproblems: [first..middle) and (middle..last) 

        if( middle-first < last-(middle+1) )  { 

            // Left problem [first..middle) is smaller, so spawn it. 

            cilk_spawn parallel_quicksort( first, middle ); 

            // Solve right subproblem in next iteration. 

            first = middle+1; 

        } else { 

            // Right problem (middle..last) is smaller, so spawn it. 

            cilk_spawn parallel_quicksort( middle+1, last ); 

            // Solve left subproblem in next iteration. 

            last = middle; 

        } 

    } 

    // Base case 

    std::sort(first,last); 

} 

Familiar practices 
for avoiding space 
blowup still work. 

Serial equivalence’s impact on space bounds 
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Impact of Breaking 

Serial Semantics 

In worst case, loop creates n-1 

tasks before executing any of 

them. 
• Serial version never did this. 

• Additional space now O(n) instead of 

O(P lg n) 

• Throttle mechanisms can offer some 

relief, but effect on space and 

parallelism can be hard to predict. 

 

void parallel_quicksort( T* first, T* last ) { 

    task_group g; 

    while( last-first>QUICKSORT_CUTOFF ) { 

        // Divide 

        T* middle = divide(first,last); 

        if( !middle ) { 

            g.wait(); 

  return; 

        } 

        // Now have two subproblems: [first..middle) and (middle..last) 

        if( middle-first < last-(middle+1) )  { 

            // Left problem [first..middle) is smaller, so spawn it. 

            g.run([=]{quicksort( first, middle );}); 

            // Solve right subproblem in next iteration. 

            first = middle+1; 

        } else { 

            // Right problem (middle..last) is smaller, so spawn it. 

            g.run([=]{quicksort( middle+1, last );}); 

            // Solve left subproblem in next iteration. 

            last = middle; 

        } 

    } 

    // Base case 

    std::sort(first,last); 

    g.wait(); 

} 

Familiar practices 
for avoiding space 
blowup may break. 



Thanks 
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