
TBB/PPL Concurrent Objects 

Arch D. Robison 



Copyright© 2012, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Concurrent Objects 

Support for concurrent sharing and updating 

Higher concurrency than STL container protected by a mutex 

• Non-blocking or fine-grain locking 

• Literature has numerous implementation techniques 

Preserve key invariants of the container 

• Interfaces resemble sequential STL, but necessarily depart  

• Does not preserve invariants between items or between containers 

– Not a cure-all for lock-free programming, but nonetheless useful. 
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Example: concurrent_queue 

Invariant:  

• If q.push(a) happens before q.push(b), then q.pop(b) cannot happen 
before q.pop(a). 
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extern std::queue<T> q; 

if(!q.empty()) { 

    item=q.front();  

    q.pop(); 

} 

extern concurrent_queue<T> q; 
q.try_pop(item); 

Concurrent pushes/pops allowed. Operations must be serialized. 

Idiomatic sequence packaged 
as single linearizable method. 
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Containers 
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Object Concurrent Ops 

concurrent_queue 
concurrent_priority_queue 

push, pop 

concurrent_unordered_set 
concurrent_unordered_map 
concurrent_unordered_set 
concurrent_unordered_multimap 

insert, find, iterate* 

concurrent_vector push_back, operator[], 
grow_by, 
grow_to_at_least 

*concurrent erase possible in theory, but 
practically useless without garbage collector. 
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Example: concurrent_vector 
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extern std::vector<T> v; 

v.insert( v.end(), u.begin(), u.end() ); 

extern concurrent_vector<T> v;  

copy( u.begin(), u.end(), v.grow_by(u.size()) );  

Concurrent append contents of u to v. 

Serial append contents of u to v 

Implementation note: Elements are not contiguous in memory. 
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Combinable 

Useful for parallel reductions 

• Each thread gets its own thread-local value 

– Value initialized on first touch 

• Method combine combines the values 

– Reduction operation should be associative and commutative 
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combinable<float> sum; 
parallel_for( 0, n, [&](int i){ 
    sum.local() += f(i); 
}); 
y = sum.combine( std::plus<float>() ); 

Summing f(i) 
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Open Issues 

Value-oriented associative containers? 

• STL has reference-based associative containers. 

• Value-oriented associative containers would mostly solve 
concurrent-erasure problem. 

Separate “parallel” and “serial” views? 

• Serial view might permit faster operations. 

Selecting concurrent requirements more precisely 

• E.g. single-producer single-consumer queue 
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INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY 
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Optimization Notice 

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that 
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and 
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on 
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended 
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for 
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information 
regarding the specific instruction sets covered by this notice. 
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