
TBB/PPL Concurrent Objects

Arch D. Robison

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Concurrent Objects

Support for concurrent sharing and updating

Higher concurrency than STL container protected by a mutex

• Non-blocking or fine-grain locking

• Literature has numerous implementation techniques

Preserve key invariants of the container

• Interfaces resemble sequential STL, but necessarily depart

• Does not preserve invariants between items or between containers

– Not a cure-all for lock-free programming, but nonetheless useful.

2

May 2012

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Example: concurrent_queue

Invariant:

• If q.push(a) happens before q.push(b), then q.pop(b) cannot happen
before q.pop(a).

3

May 2012

extern std::queue<T> q;

if(!q.empty()) {

 item=q.front();

 q.pop();

}

extern concurrent_queue<T> q;
q.try_pop(item);

Concurrent pushes/pops allowed. Operations must be serialized.

Idiomatic sequence packaged
as single linearizable method.

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Containers

4

May 2012

Object Concurrent Ops

concurrent_queue
concurrent_priority_queue

push, pop

concurrent_unordered_set
concurrent_unordered_map
concurrent_unordered_set
concurrent_unordered_multimap

insert, find, iterate*

concurrent_vector push_back, operator[],
grow_by,
grow_to_at_least

*concurrent erase possible in theory, but
practically useless without garbage collector.

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Example: concurrent_vector

5

May 2012

extern std::vector<T> v;

v.insert(v.end(), u.begin(), u.end());

extern concurrent_vector<T> v;

copy(u.begin(), u.end(), v.grow_by(u.size()));

Concurrent append contents of u to v.

Serial append contents of u to v

Implementation note: Elements are not contiguous in memory.

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Combinable

Useful for parallel reductions

• Each thread gets its own thread-local value

– Value initialized on first touch

• Method combine combines the values

– Reduction operation should be associative and commutative

6

May 2012

combinable<float> sum;
parallel_for(0, n, [&](int i){
 sum.local() += f(i);
});
y = sum.combine(std::plus<float>());

Summing f(i)

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Open Issues

Value-oriented associative containers?

• STL has reference-based associative containers.

• Value-oriented associative containers would mostly solve
concurrent-erasure problem.

Separate “parallel” and “serial” views?

• Serial view might permit faster operations.

Selecting concurrent requirements more precisely

• E.g. single-producer single-consumer queue

7

May 2012

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on
Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products.

Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and Cilk
are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Legal Disclaimer & Optimization Notice

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

8

May 2012 8

