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Abstract 

This white paper describes the common subset of two C++ programming libraries: the Parallel 
Patterns Library (PPL) and the Threading Building Blocks library (TBB) 1. Significant part of this 
subset was developed jointly by Microsoft (as part of PPL and the Visual Studio product) and Intel 
(as part of TBB and the Composer XE product). Our goal is to provide a high-level cross-platform 
parallel programming model for C++.  

Motivation 

Concurrent programming on modern operating systems is based on multithreading – the execution 
model that allows multiple threads to run at the same time, sharing one or more CPU cores.  

For an application that creates a small number of threads that require little or no synchronization, 
threads work just fine. However, for an application with fine-grain concurrency requirements, the 
overhead of creation and destruction of threads can negate the benefits of parallelism offered by 
the multiple CPU cores. Moreover, threads are expensive memory-wise. By default, a single thread 
allocates 1 MB of stack space on Windows and 8 MB on Linux. While this number is configurable, 
reducing the stack size may break programs with deep call chains or multiple stack-allocated 
objects. 

Thread pools were invented to solve this problem.  A thread pool maintains the optimal number of 
threads in the process – no more than necessary, but enough to maximize the CPU utilization and 
ensure forward progress of the program. Ideally, the number of threads would be equal to the 
number of processor cores in the system, but when the threads block, a thread pool can inject more 
threads into the system, allowing more useful work to take place. While no perfect thread pool 
algorithm exists, modern thread pools do a reasonably good job at maintaining the optimal number 
of threads for most common applications. 

However, thread pools do not solve another fundamental problem of threads – which is the lack of 
an easy-to-use programming model. We can quote Prof. Edward E. Lee of UC Berkley, who in his 
seminal paper (1) “The Problem with Threads” declared: 

[Threads] discard the most essential and appealing properties of sequential computation: 
understandability, predictability, and determinism. 

Threads, as a model of computation, are wildly nondeterministic, and the job of the 
programmer becomes one of pruning that nondeterminism. 

                                                           
1 PPL and TBB implementations differ in some details but provide similar semantics overall. Please consult 
with the documentation for details. 
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It is our belief that threads are not a good construct to program against. We need higher level 
abstractions – in the form of either a library or a language-based solution, that allow us to be 
productive while writing parallel code, and ideally, steering us towards good parallel patterns and 
practices. 

To further illustrate this point, we refer the reader to the work of Victor Duvanenko (2) that 
demonstrates using TBB and PPL to build various implementations of parallel sort. The author 
provides an implementation based on the parallel_invoke (that we will introduce on page 3) which, 
expectedly, outperforms the serial version of the sort for sufficiently large arrays. The algorithm 
does not have constraints on the upper bound of the array – it is limited only by the amount of 
memory available to the program. 

When, for the sake of an experiment, we replaced the invocation of parallel_invoke with an explicit 
thread creation in the parallel_merge_sort_hybrid_rh, the implementation crashed consistently due 
to thread exhaustion (we explain this phenomenon on page 2 below) when run on arrays as small 
as 50K elements. Note that 50K is below the minimum array size for which a parallel version of sort 
outperforms the serial version. 

Further, we experimentally introduced threads in the merge_parallel_L5 function, invoked by the 
parallel_merge_sort_hybrid_rh. After this change, the function would not scale beyond 15K integers. 
This speaks to the importance of composability of parallel algorithms, a property lacking in threads. 
To generalize this observation, we can claim that the scalability of a solution composed of several 
thread-based components tends to be less than that of each of the components. 

Structured Parallelism in PPL and TBB 

As the first step towards the goals, we depart from the thread as the basic building block of 
concurrency in favor of the task. A task is a unit of work that runs sequentially and produces a 
result by either explicitly yielding a value or via a side effect. The job of the programmer is to divide 
a workload into independent (or interdependent) tasks and allow the thread pool to map these 
tasks to threads. Furthermore, structuring the relationships between tasks permits more efficient 
mapping to threads. 

In this paper we consider the fork/join parallel model in which an algorithm is partitioned into 
many independently executing tasks, that are spawned, run independently, and then are joined to 
produce the final result. Much as serial control structures simplify reasoning about sequential 
control flow, the fork/join control structures simplify reasoning about parallelism – the parallelism 
created is limited to the dynamic scope delimited by the fork and the join. 

task_group 

The most basic construct of the fork/join parallelism in PPL is called the task_group2. A task group 
is a collection of tasks that can run in parallel and can be collectively waited on.  

A typical use of a task group goes like this: 
 
task_group tg; 

                                                           
2 The name resides in the concurrency namespace. All PPL constructs are defined in this namespace, which for 
brevity is not explicitly mentioned elsewhere in the document. In TBB, task_group and other parallel 
constructs are also defined in the tbb namespace. 
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tg.run([] { 
    f(); 
}); 
tg.run([] { 
    g(); 
}); 
tg.wait();  

 
Here we created an instance of the task_group class and added two work items to it using the run 
method. This method expects a callable object – which typically would be a C++ lambda expression. 

The work items added to the task group are not started immediately but are placed on the thread 
pool3. As soon as the thread pool finds a thread available to run it, the work item gets executed by 
that thread.  

An important optimization implemented by the task group is called the task inlining. When the wait 
method on a task group is called, some or all of the pending tasks in the task group can execute on 
the calling thread. The idea is easy to understand – instead of waiting for someone else to become 
available to pick up and complete the work, it’s better to just do it yourself. This technique is 
essential in preventing the “thread explosion” phenomenon – a situation where a thread spawns 
and then waits for another thread to perform work, which in turn spawns and waits for another 
thread, ad infinitum. Thread explosion can occur in parallel divide-and-conquer algorithms, such as 
a typical parallel implementation of sort (such as the one described in (12)). 

Task inlining can be enforced by the run_and_wait method that has the same signature as the run 
method. Whereas run followed by the wait may inline if the task hasn’t started running already, the 
run_and_wait is guaranteed to inline the task. Note that enforced task inlining is also preferred to 
direct execution of a work item followed by the wait, as it may help to manage HW cores more 
efficiently, and may return earlier if the task_group was cancelled. 

parallel_invoke 

The parallel_invoke function is one of the simplest constructs in PPL/TBB. The function takes two or 
more callable objects and executes them in parallel. Here is how our previous example of running f 
and g in parallel could be written with the parallel_invoke: 

 
parallel_invoke( 
    []{f();}, 
    []{g();} 
); 

 
As it is well known, functional parallelism, which parallel_invoke represents, only scales up to the 
number of specified tasks (which typically is a fairly small number), unless applied recursively. 

                                                           
3 The Microsoft's PPL uses a specialized implementation of a thread pool called the Concurrency Runtime, or 
ConcRT for short 
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The Microsoft version of parallel_invoke is implemented based on the task_group, but that’s not the 
only possible implementation. Variadic templates would simplify the implementation significantly, 
though this recent C++ feature was not available during the implementation. 

Loop Paralelization with parallel_for 

Anecdotally, the parallel_for function is by far the most widely used algorithm in the PPL and TBB. 
For many of PPL users, this is the only algorithm they ever used. 

Indeed, loops are often the most computationally intensive part of an application, and parallelizing 
the “hot” loops is the surest way to improve the program’s performance. Unlike the parallel_invoke, 
the parallel_for can scale much better, as long as the number of iterations in the loop is sufficient to 
give enough work to all cores in the system. Ideally, parallel_for should produce much more tasks 
than the number of cores, to provide slack for load balancing.  

In the following example, we use the parallel_for to parallelize a matrix multiplication algorithm: 
 

void MatrixMultiplyPar(int rows1, int cols1, float **mat1, int rows2, int 
cols2, float **mat2, float **result) 
{ 
    parallel_for(0, rows1, [=](int i) 
    { 
        for(int j=0;j<cols2;j++) 
        { 
            float tempResult = 0; 
            for(int k=0;k<rows2;k++) 
            { 
                tempResult += mat1[i][k]*mat2[k][j]; 
            } 
            result[i][j] = tempResult; 
        } 
    }); 
} 

 
The parallel_for looks sufficiently close to a typical for statement in a C++ program to be easy to 
understand and use. The function takes the upper and the lower bounds of the loop, the optional 
step value (1 if omitted), and the callable object (typically, a C++ lambda expression) that will be 
invoked for each iteration of the loop. The input parameter to the lambda is the induction variable 
of the loop. 

PPL and TBB have been on the market for several years now, giving us ample opportunity to 
observe both the good usage patterns as well as the common pitfalls with the parallel_for. 

Most novice users quickly realize that not every loop is amenable to parallelization. (A C++ hobbyist 
once commented on the Microsoft C++ user’s group that parallel_for breaks his implementation of 
bubble sort). Other hazards include race conditions and a variety of performance issues (using 
locks inside loops, false sharing etc.) Both Microsoft and Intel have accumulated vast experience 
educating users on the best practices of parallel programming in C++. Microsoft has published a 
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guide on best practices (2) as well as an in-depth exploration of PPL patterns and anti-patterns (4). 
Intel likewise has a guide on TBB patterns (9). 

parallel_for Implementation Overview 

The Microsoft implementation of the parallel_for is based on the task_group. Depending on the 
nature of the workload, different partitioning strategies can be used: 

 Static Partitioner divides the range into as many chunks as there are cores, and runs these 
chunks as parallel tasks. This partitioner is used for well-balanced workloads – that is, when 
all iterations of the loop are of roughly equal computational complexity. 

 Simple Partitioner divides the range into multiple chunks where the size of the chunks is 
specified by the user. Having a large number of tasks is useful for uneven workloads – when 
some tasks finish, others will be picked up by the thread pool ensuring continuous CPU 
utilization. The drawback of this approach is greater memory consumption and more 
contention on the thread pool task queue. 

 Auto Partitioner is the default partitioner in PPL. This partitioner divides the range into a 
fixed number of chunks and then employs a technique for dynamic redistribution of work 
known as range-stealing. This allows the tasks that complete sooner to “steal” iterations 
from the other, still running, tasks. 

Our measurements show that the auto partitioner performs better in most cases, and is effective for 
uneven workloads, such as the Mandelbrot algorithm. For the workloads known to be balanced we 
recommend either the static or the simple partitioner. 

The Intel implementation of the parallel_for employs task stealing and a heuristic that dynamically 
estimates how many iterations to put in each task (7). 

parallel_for_each 

The parallel_for_each function applies a specified functor to each element within a range, in parallel. 
It is semantically equivalent to the for_each function in the std namespace, except that iteration over 
the elements is performed in parallel, and the order of iteration is unspecified. 

The effectiveness of the parallel_for_each depends on the type of the iterator provided. For a 
random access iterator, the entire range can be determined up front, and the implementation can 
fall back to the parallel_for. 

For forward iterators, the parallel_for_each iteratively “peels off” portions of the range and executes 
these portions in parallel. Clearly, the cost of advancing the iterator plays a major role in the 
effectiveness of the parallel_for_each. 

In TBB, Intel additionally provides parallel_do which is analogous to parallel_for_each but also has 
an option to dynamically add new work items produced during its execution. For applications 
where it fits it can reduce the iteration cost and improve scaling. 

parallel_transform 

This functional in PPL is semantically equivalent to the std::transform. It applies a specified function 
object to each element in a source range, or to a pair of elements from two source ranges, and 
copies the return values of the function object into a destination range, in parallel.  
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For all intents and purposes, the parallel_transform can be thought of as a faster version of the 
std::transform. The only obvious caveat is, the function object must be concurrency safe (normally it 
is a pure function, so it is not an issue). 

parallel_reduce 

The parallel_reduce function is the parallel counterpart to the std::accumulate method with two 
important caveats. 

The last parameter to std::accumulate is the initial value, whereas the last parameter to 
parallel_reduce is the identity value. Consider an array of integers: 
 
int data[] = {1,2,3}; 

 
The call to std::accumulate(begin(data), end(data), 1) will return 7, whereas the result of 
parallel_reduce(begin(data), end(data), 1) will be undefined, because 1 is not the right identity value 
for ‘+’ (0 is). 

The other difference is that the binary operation in parallel_reduce must be associative, which is not 
required for the std::accumulate. 

Due to these subtle but important differences, we decided to not call the function 
parallel_accumulate and avoid bugs introduced by developers replacing std::accumulate to 
parallel_accumulate wholesale. 

Parallel Sorting 

PPL offers three versions of parallel sorting: 

 parallel_sort, which is a general-purpose predicate-based in-place sort based on the 
parallel Quicksort algorithm. 

 parallel_buffered_sort , which is a faster general-purpose predicate-based sort that 
requires additional O(N) space. 

 parallel_radixsort, which is a stable sort function that requires a projection function that 
can project elements to be sorted into unsigned integer-like keys. The function requires 
additional O(N) space. 

For workloads where allocating additional memory is acceptable, we recommend using 
parallel_buffered_sort, and for types that are amenable to mapping to integer key, parallel_radixsort 
can offer the best performance. 

Picking the right version of parallel sort is based on a number of criteria. Without going into too 
much detail here, we refer the interested reader to our blog posts (5) and (6) that provide 
comprehensive analysis of the three available choices. 

Overview of Concurrent Objects 

Concurrent objects enable concurrent sharing and updating of an object without needing a mutex to 
serialize operations on it.  Except for combinable, the concurrent objects presented in the document 
are containers.  The goal of the containers is to permit higher concurrency than would be possible 
by protecting a non-concurrent container with a mutex. Higher concurrency than a mutex-
protected container is possible by use of sophisticated implementation techniques such as internal 
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fine-grained locking4, non-blocking techniques, or aggregation of operations.  The container 
interface hides these implementation details from the user.  

Concurrent containers are not a cure-all for lock-free programming.  Each concurrent container 
protect invariants local to the container, not across multiple containers.  Nonetheless we believe 
they have a place in the toolbox of parallel programmers since they can offer significant 
performance gains for common scenarios. 

The TBB/PPL concurrent containers have interfaces similar to standard STL interfaces, but 
different enough to permit safe concurrent operation.  The differences most involve packaging 
several STL operations into commonly used transactions.  For example, for serial operation of a 
std::queue, a common idiom is: 
 
if( !q.empty() ) { 
    value=q.front();  
    q.pop(); 
} 

 
No matter how the queue is implemented, the sequence is unsafe if q is concurrently emptied.  The 
container class concurrent_queue has a single operation, try_pop, for the idiom.  A consequence of 
designing for common transactions is that the concurrent containers are containers in their own 
right, not adaptors around other containers. 

The permitted concurrency for the objects is not tied to any tasking framework, and thus the 
containers are generally safe to use with any form of thread-based parallelism, such as std::thread, 
OpenMP parallel regions, or PPL/TBB parallel algorithm templates. 

We invite readers interested in implementation issues to study some of the papers in the 
references, and inspect the open-source TBB distribution, which has implementations of all 
concurrent objects mentioned except for  concurrent_unordered_multimap and  
concurrent_unordered_multiset. Likewise, all of the PPL sources ship with the Visual Studio and can 
be examined. 

Note on linearizability: The TBB/PPL concurrent objects have semi-linearizable concurrent 
operations.  Linearizability is well established in the literature as an important property for 
reasoning about shared objects.  It means that the effects of each operation appear to happen 
atomically at some time (its linearization point) during the invocation of the operation. By semi-
linearizable, we mean that effects of the operation not involving external functionality, appear 
atomically.  For example, two push_back operations on a concurrent_vector each must allocate 
space, and then execute copy constructors.  At the linearization point for each push_back, space is 
allocated and the size of the vector is updated, but the copy constructor for the item is invoked 
later.  Hence the copy-construction action, which is external functionality provided by the user, is 
not guaranteed to be part of the linearization point for the container update.  In effect, it is up to the 
user to ensure that their copy constructor is a second linearization point if they want linearizability.  
Our semi-linearizability convention seems to be a good tradeoff between simple reasoning and 
enabling concurrency. 

The following subsections discuss particulars of the various concurrent objects.   

                                                           
4 With care, of course, to never hold a lock while calling user-defined code. 
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concurrent_queue 

Queues are a popular way for threads to communicate with each other.  Instances of 
concurrent_queue support arbitrary mixes of concurrent pushes and pops.  As in N3353 (11), the 
interface is value-based.  The principal methods for pushing and popping are: 
 
void push( const T& source );   // Push value of source 
bool try_pop( T& destination ); // Try popping head value into destination 

Method try_pop returns true if successful, false if the queue was empty.  Note that the interface 
permits a non-blocking implementation where consumers never wait5.  

Method empty is provided.  Method size is renamed unsafe_size because the size might be reported 
inaccurately if the queue is undergoing modification.. 

Given multiple producers or multiple consumers, there are several possibilities for the ordering 
semantics of a concurrent queue.  We chose to guarantee “first-in first-out” according to the 
“happens before” relation: If push(x) happens before push(y) and try_pop(a) happens before 
try_pop(b), then the outcome x=b and y=a is not allowed.6   

Because of an inherent tradeoff between performance and iterator support, the iterator support for 
concurrent_queue is limited, and intended only for debugging.  It enables walking a quiescent 
concurrent_queue so that its contents may be inspected.  To emphasize the limited nature (and lack 
of concurrency safety), the methods for returning the endpoint are named unsafe_begin and 
unsafe_end. 

There are numerous papers in the literature on implementing concurrent queues (for instance, see 
(12) and its references).  The current TBB/PPL implementation is based on atomic counting and 
fine-grained locking. 

Possible Future Directions for concurrent_queue 

Some improvements in efficiency are possible if the number of producers is known to be one or the 
number of consumers is known to be one.  For example, a single-producer single-consumer queue 
can be implemented on some architectures with extremely low overhead (13).  Hence it might be 
desirable to have a template parameter indicating whether the intended usage limits the number of 
producers and/or number of consumers to one. 

concurrent_priority_queue 

Class concurrent_priority_queue is to concurrent_queue what std::priority_queue is to std::queue.  
Items are delivered in priority order instead of first-in-first out order. The priority is specified as a 
strict weak order, as in std::priority_queue.   

                                                           
5 The current implementation is technically “blocking”.  Specifically, the consumer of a value can block 
between the time that the producer of a value starts pushing and the copy of the value is actually constructed 
in the queue.  A fully non-blocking alternative was possible, but the performance cost did not seem worth the 
benefit.   
6 This is the intended semantics, albeit the TBB documentation says something else, even though the shipping 
implementations make the guarantee stated in this paper. 
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There are numerous papers in the literature on implementing concurrent priority queues (14).  The 
current TBB/PPL implementation is based on a traditional heap in conjunction with a flat-
combining mechanism (15) that dynamically aggregates requests. 

Possible Future Directions for concurrent_priority_queue 

Class current_priority_queue does not currently support a debugging iterator interface like class 
concurrent_queue does.  Ideally such an interface would provide a means to traverse the elements in 
priority order, though we do not know of a way to implement such efficiently in space and time. 

Unordered Associative Containers 

The TBB/PPL concurrent containers include concurrent variants of the unordered associative 
containers in the C++ standard library.  They are named concurrent_unordered_map, 
concurrent_unordered_set.  PPL also has the multiset and multimap analogs.  

The concurrent forms support concurrent insert, find, and iteration.  An example use case for 
concurrent insert and find is memoization, such as in parallel implementations of the “Hash Life” 
algorithm (16). Experience with TBB’s concurrent_hash_map was that many users requested the 
ability to walk the table while concurrently inserting new items.  

Concurrent erasure is not supported in the current shipping implementations, but could be, though 
the lack of garbage collection in C++ makes such a feature tricky to use.  The problem is that if there 
is a race between erasing an item and accessing via one of the other operations, the access might 
end up accessing an item that is being (or is) destroyed.  We have investigated protocols for solving 
the concurrent erasure problem, in which a value is notified when destruction or access is 
requested, and can resolve the conflict, but so far these protocols have added considerable 
complexity to the interface and added as much hanging rope as they removed. 

The recommended implementation technique is a split-ordered list (17), which enables the 
concurrent operations to be non-blocking.   

concurrent_vector 

concurrent_vector enables concurrent random access and growth of a densely indexed table. A 
concurrent_vector does not guarantee contiguous storage, that is it does not promise that &v[i]-
&v[j]==i-j.  However, like std::vector, it does promise constant-time indexing and furthermore, 
unlike std::vector and like std::deque, it does not move existing items when more items are 
appended.   

A concurrent_vector supports two growth idioms: 
 appending a contiguous sequence of n elements 
 ensuring there are at least n elements 

Examples for a concurrent_vector v: 

 v.push_back(x) appends x to the sequence. 
 v.grow_by(n) appends a contiguous sequence of n default-constructed elements, and returns 

an iterator pointing to the beginning of the sequence.  
 v.grow_to_at_least(n) appends enough elements to v so that v.size()>=n. 

For example, the following code appends the contents of a std::vector u to a concurrent_vector v: 
 
copy( u.begin(), u.end(), v.grow_by(u.size()), s ); 
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The current implementation uses a two-level indexing scheme that enables constant-time indexing, 
yet bounds asymptotic memory consumption to no more than twice what the equivalent std::vector 
would use.  The first level is a small table of pointers.  The second level consists of segments, where 
each segment is twice the size of the preceding segment.   

Dmitry Vyukov has shown that for x86 processors the instruction count for operator[] can be as few 
as 4 instructions (18). With indexing cost that low, an iterator to concurrent_vector can be 
implemented as a mere index; otherwise, it can cache and increment a pointer to its current 
element and keep the amortized cost of iteration below that of indexing. 

Combinable 

Class combinable is the concurrent object that is not quite like an STL container.  It addresses a 
common pattern in parallel programming: using a set of threads to compute a ``reduction'' value 
from a dataset, such as a sum, by letting each thread do a subcomputation on a portion of the 
dataset and then merging subresults.  Doing so obviates the need for locking or other forms of inter-
thread communication during the local subcomputations.  Class combinable directly support this 
common pattern.  It is a collection of thread-local values, for which each thread can access its own 
value, and the values can be easily merged after subcomputations finish. 

Here is an example that performs a parallel sum reduction of f(i): 
 
combinable<float> sum; 
parallel_for( 0, n, [&](int i){ 
    sum.local() += f(i); 

} 
sum.combine( []( int a, int b ) {return a+b;} ); 

Method local returns a reference to the thread's local value.  Method combine combines the views 
using the supplied binary functor.  For deterministic results, the functor must be both associative 
and commutative.   

By default, a new thread-local value is default-constructed; for example, in the above example the 
values are zero-initialized. There are constructors for combinable that permit specifying a default 
value for a new thread-local value, or specifying a functor for constructing a new thread-local value. 

Possible Future Directions for combinable 

TBB has an extension, enumerable_thread_specific, that exposes a "container of views" interface, 
thus permitting direct iteration over the set of thread-local values using STL iterator conventions. 

Concurrent Containers and STL Compatibility 

The design of a concurrent container must balance keeping the API as close to STL as possible 
against making the container both safe and efficient to use in a concurrent context.  This section 
explores ways that might avoid having to tradeoff one of these goals for the other. 

As noted before, the standard STL interfaces are often unsafe to use in concurrent contexts.  
Furthermore, STL compatibility sometimes precludes more efficient concurrent solutions. For 
example, value-based designs of concurrent hash tables can be significantly faster than the current 
split-ordered list implementation in TBB/PPL, in exchange for not having concurrent iterators and 
references to the stored data. 

In PPL and TBB, unless impractical, we chose STL similarity at the expense of performance, to ease 
learning of the API and to facilitate adding parallelism to existing C++ programs. For the latter, 
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possibility to use containers in serial context in a familiar way is important. For example, iterator 
support in our containers lets them be used with serial STL algorithms. 

Sometimes, however, we deliberately chose to omit or rename methods (e.g. the unsafe_* methods 
mentioned earlier) to prevent potential bugs when similarity might imply stronger guarantees than 
we could provide. Unfortunately, this choice disallows perfectly safe use of the expected STL 
methods in serial contexts. 

Moreover, use of concurrent containers in serial contexts is also likely to be suboptimal 
performance-wise, and in some cases very inefficient, because STL-compliant concurrent methods 
must have synchronization that is unnecessary in serial contexts, and thus penalizes adoption of 
parallelism. Worse serial performance can impact parallel performance as well. Consider the 
following pattern: 

1. In the first phase of an algorithm, multiple threads fill a container in parallel.   

2. In the second phase of the algorithm, multiple threads read the container but do not modify 
it.  

Having only a concurrency-safe interface forces phase 2 to pay unnecessary synchronization costs.  
It is not “pay as you go”. For instance, we observed this pattern in OpenCV’s use of TBB, where it 
works around the problem by copying the concurrent_vector from phase 1 into a std::vector before 
doing phase 2. 

Ideally, we would like it to be possible to have different implementations of certain container 
methods with the same name and common semantics, with the right one automatically selected 
depending on whether the context requires concurrency safety. These methods would operate on 
the same data structure and access the same data, while ensuring best performance and proper 
correctness depending on the usage context. 

We see at least two possible ways toward this: 

1. Exploit a language extension similar to a cv-qualifier but for concurrency, e.g. concurrent 
qualifier (or, maybe, the opposite, serial qualifier). Andrei Alexandrescu in (19) attempted 
to use, or rather abuse, volatile for the same purpose. Like the const qualifier separates read 
and write methods and accesses, selecting appropriate overloads in corresponding contexts, 
the new concurrency qualifier would clearly separate serial methods from concurrent ones 
for all the purposes: implementation, usage, and documentation. Appropriate rules would 
be established to disallow calls to serial methods for an instance referred as concurrent, as 
well as treating all the members of a class as concurrent in context of a concurrent function. 
There are many issues with this approach that must be resolved, but we believe it is worth 
considering. 

2. Concurrent containers could provide a type-cast interface for switching views (defined as 
separate classes) for the same physical instance / data layout. For example, the usage 
pattern described above could be implemented as follows: 
 

concurrent_vector<my_type> my_vector; 
parallel_for(0, n, fill_in(my_vector)); 
const auto &my_readonly_vector = serial_cast(my_vector); 
parallel_for(0, my_readonly_vector.size(), process(my_readonly_vector) ); 

It  would be programmers’ responsibility to ensure that the serial view of a container is not 
used in a context that allows concurrent modifications. In scenarios when the programmer 
does not have full control over the context (often the case for library developers), such a 
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cast could be impossible or impractical, causing the programmer to conservatively use the 
concurrency-safe API. 

We realize that even the compiler-based solution cannot resolve all the issues raised here. For 
example, the tradeoff between best performance and STL compatibility will still remain for 
concurrent context; and the internal data organization of concurrent containers might still penalize 
the access in serial context (for example, operator[] of concurrent_vector will still need extra 
calculations due to non-contiguous storage). But at least in some cases designers and users of 
concurrent objects would not need to choose between safety, performance, and usability. 

Acknowledgment 

Anton Malakhov contributed the notions and examples discussed in the section about “Concurrent 
Containers and STL Compatibility.” 

References 

(1) Lee, E. A. “The Problem with Threads”. EECS Department, University of California, Berkeley 
2006. 
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf 

(2) Duvanenko, V. “Parallel Merge Sort”. Dr. Dobb's Journal March 24, 2011. 
http://www.drdobbs.com/go-parallel/article/229400239 

(3) Best Practices in the Parallel Patterns Library 
http://msdn.microsoft.com/en-us/library/ff601930.aspx 

(4) Patterns and Practices for parallel programming in C++ 
http://www.microsoft.com/download/en/details.aspx?id=22499 

(5) Sorting in PPL 
http://blogs.msdn.com/b/nativeconcurrency/archive/2011/01/15/sorting-in-ppl.aspx 

(6) How to pick your parallel sort? 
http://blogs.msdn.com/b/nativeconcurrency/archive/2011/01/26/how-to-pick-your-
parallel-sort.aspx 

(7) Intel Threading Building Blocks Tutorial 
http://threadingbuildingblocks.org/uploads/81/91/Latest%20Open%20Source%20Docu
mentation/Tutorial.pdf  

(8) Intel Threading Building Blocks Reference Manual 
http://threadingbuildingblocks.org/uploads/81/91/Latest%20Open%20Source%20Docu
mentation/Reference.pdf  

(9) Intel Threading Building Blocks Design Patterns 
http://threadingbuildingblocks.org/uploads/81/91/Latest%20Open%20Source%20Docu
mentation/Design_Patterns.pdf 

(10) Robison, A. and Voss, M. and Kukanov, K.  “Optimization via Reflection on Work Stealing in 
TBB”, HIPS-POHLL 2008. 

(11) Crowl, L. C++ Concurrent Queues. 
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3353.html 

(12) Moir, M. et al. “Using elimination to implement scalable and lock-free FIFO queues”, SPAA 
’05. 

(13) Giacomoni, J. and Moseley, T., and Vachharajani, M.  “FastForward for efficient pipeline 
parallelism: a cache-optimized concurrent lock-free queue”, PPoPP ’08. 

(14) Dragicevic, K. and Bauer, D.  “A Survey of Concurrent Priority Queue Algorithms”, IPDPS 
2008. 

(15) Hendler, D. et al.  “Flat combining and the synchronization-parallelism tradeoff”, SPAA ’10. 

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf
http://www.drdobbs.com/go-parallel/article/229400239
http://msdn.microsoft.com/en-us/library/ff601930.aspx
http://www.microsoft.com/download/en/details.aspx?id=22499
http://blogs.msdn.com/b/nativeconcurrency/archive/2011/01/15/sorting-in-ppl.aspx
http://blogs.msdn.com/b/nativeconcurrency/archive/2011/01/26/how-to-pick-your-parallel-sort.aspx
http://blogs.msdn.com/b/nativeconcurrency/archive/2011/01/26/how-to-pick-your-parallel-sort.aspx
http://threadingbuildingblocks.org/uploads/81/91/Latest%20Open%20Source%20Documentation/Design_Patterns.pdf
http://threadingbuildingblocks.org/uploads/81/91/Latest%20Open%20Source%20Documentation/Design_Patterns.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3353.html


13 

 

(16) “Hashlife.” http://en.wikipedia.org/wiki/Hashlife 
(17) Shalev, O. and Shavit, N. “Split-ordered lists: Lock-free extensible hash tables”, JACM 53(3), 

May 2006. 
(18) Vyukov, D. “Possible optimization of concurrent_vector::operator[]()”, Intel Threading 

Building Blocks forum, Jan. 18, 2010. 
http://software.intel.com/en-us/forums/showthread.php?t=71300 

(19) Alexandrescu, A. “volatile - Multithreaded Programmer's Best Friend”, C/C++ Users 
Journal, February 2001. 
http://www.drdobbs.com/article/print?articleId=184403766 

 

http://en.wikipedia.org/wiki/Hashlife
http://software.intel.com/en-us/forums/showthread.php?t=71300
http://www.drdobbs.com/article/print?articleId=184403766

