
Parallel, In-order Creation of lists
Pablo Halpern, 2 May 2012

In Kona, I presented N3361, which advocates the position that C++ should have language constructs for
parallel programming. The presentation included an overview of Intel® Cilk Plus™, including a unique
library feature called reducers. Unfortunately, my original example for reducers did not illustrate one of
the primary advantages of reducers over other parallel reduction constructs such as the Combinable
template in Microsoft’s PPL*: that the reduction operation needs to be associative but not necessarily
commutative. This means, for example, that you can use a reducer to create linked list because the list-
append operation is associative. The resulting linked list will have the same order of elements as the
same program with the Cilk keywords elided (i.e., a serial program that looks like the Cilk program but
runs with only one thread).

I have heard some skepticism that our list reducer could produce a list in the same order as the serial
program without paying a performance penalty. To prove the point, I created a benchmark program
called reducer_proof.cpp, which is attached to the SG1 Wiki page. (It writes results to stdout in CSV
format.) Below are the results† of a few runs of the benchmark:

Hardware: 8-core E5520 (Nehalem) @ 2.27GHz (2 sockets at 8 cores each)
 Hyperthreading turned off
 6GB memory
 Windows 7, 64-bit
Compiler: Intel Compiler, version 13.0 beta 2+ at optimization /O3,
Program: 64-bit executable
Total iterations per test: 100,000,000
Each test repeated 5 times
Min-ticks = fastest run for each test. avg.-ticks = average of 5 runs.

name
in-
order?

min-
ticks

avg.-
ticks

Serial yes 5757 5934.2

Cilk with worker-indexed array no 1918 2243.2

Cilk with combinable no 1778 1809.6

Cilk with reducer yes 1731 1762.8

Cilk with worker-indexed array and inner loop no 2028 2187.0

Cilk with combinable and inner loop no 1747 1765.4

Cilk with reducer and inner loop yes 1763 1781.4

The highlighted regions show that the performance with the reducer is as good as using Combinable.
Note that the reducer produced results in order and Combinable produced results out of order. The
less-than-stellar speed-up (about 3.2x on 8 cores) is probably caused by the extensive memory
allocation in the std::list. When I get a chance, I might try this test again using the TBB scalable memory
allocator to see if it improves the speedup numbers.

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3361.pdf

The ability to create code that reads like serial code and produces identical results to serial code is one
of the major selling features of Cilk and is a major reason why we would prefer to see a language
extension rather than a PPL-like or TBB-like library.

†Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

