
C++11, VC++, and Beyond Herb Sutter

Date updated: June 12, 2012

Page: 1

Foundation
future, date/time, N-dim array, ranges, UUID, variant, …

 “// Don’t write this code!!!”

int fib(int n) {
 if (n <= 1) return n;
 int fib1, fib2;
 std::thread t([=, &fib1] { fib1 = fib(n-1); });
 fib2 = fib(n-2);
 if (fib2 < 0) throw “ick”;
 t.join();
 return fib1 + fib2;
}

 Lifetime error.

C++11, VC++, and Beyond Herb Sutter

Date updated: June 12, 2012

Page: 2

 Natural code, with surprising(?) semantics:

{
 async(launch::async, []{ f(); });
 async(launch::async, []{ g(); });
}

 There is no parallelism in this code and the standard
requires it to be executed sequentially.

 Q: Isn’t that surprising?

 Consider these two pieces of code:

// (a) // (b)
{ {
 async([]{ f(); }); auto f1 = async([]{ f(); });
 async([]{ g(); }); auto f2 = async([]{ g(); });
} }

 Some of us feel that (a) and (b) should have the same
behavior.

 They cannot if ~future joins.

C++11, VC++, and Beyond Herb Sutter

Date updated: June 12, 2012

Page: 3

 What does this code do? In particular, does it block?

 void func() {
 future<int> f = start_some_work();
 /*... more code that doesn’t f.get() or f.wait() */
 }

 The answer is different depending on whether the function chose to launch its

work via a std::thread or std::async.

 This is not composable. We must always be able to tell if code might block.

 Qs: Can I use std::future, even though I don’t need the result, if the caller:
 Could be called under a lock the task may need? (Deadlock.)
 Is supposed to be responsive (e.g., a GUI thread)? (Nonresponsive.)

< expressive or
< execution guarantees
= most optimizable

> expressive/general or
> execution guarantees

= least optimizable

< information requested
= most optimizable

(might do less work)

> information requested
= least optimizable

(must do more work)
find
all

find
any

find
first

par-
tition

partial
sort

sort

structured

return on any thread

(maybe) unstructured

return on same thread

C++11, VC++, and Beyond Herb Sutter

Date updated: June 12, 2012

Page: 4

< expressive or
< execution guarantees
= most optimizable

> expressive/general or
> execution guarantees

= least optimizable

< information requested
= most optimizable

(might do less work)

> information requested
= least optimizable

(must do more work)
find
all

find
any

find
first

par-
tition

partial
sort

sort

structured

return on any thread

(maybe) unstructured

return on same thread

serial
equivalence

Semantics fib(30) Space fib(30) #Thds fib(30) Speed

std::thread In a new thread
Not scalable

[Hans’ test]
>200GB virtual
memory

1,346,268 n/a (died)

std::async +
launch::async

std::async +
default

In this or
another thread
Enables work
stealing, task
inlining

[Herb’s test]
Nearly constant
(always <1MB)

4 (?) Linear,
~8usec/task
(naïve attempt,
didn’t investigate
optimizations)

C++11, VC++, and Beyond Herb Sutter

Date updated: June 12, 2012

Page: 5

Semantics fib(30) Space fib(30) #Thds fib(30) Speed

std::thread In a new thread
Not scalable

[Hans’ test]
>200GB virtual
memory

1,346,268 n/a (died)

std::async +
launch::async

“As if” in a new
thread
Should enable
thread pool

[Artur’s test?]
Nearly constant
(always <1MB)

? (low) ? (Linear)

std::async +
default

In this or
another thread
Enables work
stealing, task
inlining

[Herb’s test]
Nearly constant
(always <1MB)

4 (?) Linear,
~8usec/task
(naïve attempt,
didn’t investigate
optimizations)

