
Asynchronous
operations

Niklas Gustafsson

Microsoft Corp.

Premise

• Synchronous, blocking, APIs are bad for a number of reasons:

– Handling I/O using synchronous APIs wastes resources and limit scalability by

waiting for completion inefficiently
– Synchronous APIs make programming responsive graphical user interfaces

complicated
– By waiting synchronously, cancellation of outstanding work is complicated

• Asynchronous APIs address these problems and are becoming more and

more ubiquitous
– AJAX
– Silverlight / .NET
– Windows 8
– Boost ASIO
– Node.js

Problem

• The synchronous paradigms let developers presume
that when a function returns, its result is available and
its side-effects are complete

• The asynchronous paradigm is that the result will
eventually be available and the side-effects will
eventually be complete
– This delay introduces tremendous complexity; thus,

asynchronous programming is hard

– There is no standard way of representing asynchronous
operations in C++ (but there are in other languages)

Major Asynchronous Patterns

• Direct Callbacks
– Pass a function object into the function initiating the operation
– Used in Boost ASIO, Windows, .NET 4 (with modifications)

• Callback Interfaces
– Pass a reference to an interface implementing the callback logic
– Used in Windows 8

• Futures
– Initiating function returns an object to which handlers can be

attached
– Used by JavaScript, .NET 4.5, many others

std::future / std::shared_future

• std::future does allow functions to represent a
return value’s eventual availability

• Completely avoids having to pass callbacks or
interfaces down

• but …

std::future / std::shared_future

• … just moves the synchronization to another location, the call to
get()

• … does not allow the calling code to compose multiple operations
into one

• … defines no “canonical” API for cancellation

• … does nothing to optimize for immediately available (prompt)
values

• … provides no mechanism for making sophisticated scheduling
choices

std::future “v2”

• Add an “asynchronous get(),” called “then(),” to allow chaining of code together by
supplying a continuation function object

• Add when_all() and when_any() for parallel composition

• Add create_value<T>() / create_void() to create a “prompt” future

• Add is_done() to test whether a value is available to retrieve without blocking

• Adds a canonical abstract scheduling interface to implement custom scheduling
logic

std::future “v2”

// From a Windows 8 / Metro-style game

auto ctx = windows::context::use_current();

m_client.request(methods::PUT, buf.str()).then(
 [this](std::future<http_response> tsk)
 {
 try
 {
 InterpretResponse(tsk.get);
 }
 catch (utilities::win32_exception &exc)
 {
 InterpretError(exc.error_code());
 }
 }, ctx);

Cancellation

• The need to cancel specific outstanding work
is a common and important use case

– Asynchronous operations make this a whole lot
easier than synchronous

• Either consumer or producer may initiate

– Producer: call set_exception()

– Consumer: ?

Cancellation

• Proposal:
– Add the concept of a “cancellation token”

• Associate a token with each future/promise

• Allow independent tokens to be created and associated with
multiple futures/promises

– Listeners (producers) register with the token
• Operation creation functions have overload taking a token

– Initiators call ‘cancel()’ on the token
• Event is signaled to all present and future listeners

Scheduling

• The addition of continuation chaining (then()) requires a formalized notion of
scheduling

– Programmers may need control of what resources are used to execute the continuation
code.

• Throttling in a server-based scenario

• Scalable mutual exclusion

• Scheduling on the GUI thread in a client scenario

– For example

Boost ASIO: IO Service

.NET: Synchronization Context

• Doesn’t have to be complex, but needs to be abstract

Feasibility

• This approach is currently taken by .NET,
JavaScript, and other language environments
– C# and VB are even building in language support

for it

• PPL tasks, shipping in the next release of
Visual Studio, makes this model available and
is promoted as the preferred way to compose
Windows 8 asynchronous operations in C++

Backup

