Resumable Functions

Resumable Functions

e std::future v2 provides:
— Flexible and rich composition
— Efficient support for immediately available results
— Cancellation
— Scheduling

e std::future v2 leaves unsolved:

— Complexity of interacting with synchronous control flow,
i.e. composing asynchronous code with loops, if-
statements, goto, exception handling, etc.

— Programmer unfamiliarity with “code inversion” pattern

Proposal

Add two concepts to the language:

— Resumable functions
Multi-phase functions, identified at declaration:

future<int> f(stream str) resumable;

— Resumption points

Unary operator, only available in resumable functions,
waiting for a promised value to become available:

int count = await str.read(512, buf);

Proposal

 To the caller, a resumable function behaves like any other function

Returns a container, which may initially be empty
The resumable function will eventually fill the container

e The compiler transforms the function definition to a non-blocking form

Allocating locals in heap-based storage, based on liveness analysis
Introducing a function state machine and state-based function prolog code
Transforming each resumption point locally

Transforming each return statement locally

No transformation of function declaration or calling convention

* Resumable functions may call other resumable functions as well as non-
resumable functions

* Non-resumable functions may call resumable functions

Example |

future<int> f(shared ptr<stream> str)
{
shared ptr<char> buf = ...;
return str->read(512, buf)
.then([](future<int> op) // lambda 1

{
return op.get() + 11;
1)
}
void g()
{
shared ptr<stream> s = ...;
f(s).then([s](future<int> op) // lambda 2
{
s->close();
1)

Example |

future<int> f(stream str) resumable

{
char buf[512];

int count = await str.read(512, buf);
return count + 11;

}
future<void> g() resumable
{
stream s = ...;
int plsll = await f(s);
s.close();

Example Il

auto write = [&buf](future<int> size) -> future<bool>

{

return streamW.write(size.get(), buf)
.then([](future<int> op){ return op.get() > 0; });

}s

auto flse

[](future<int> op){ return async::value(false);};

auto copy = do while([&buf]() -> future<bool>

{
return streamR.read(512, buf)

.choice([](future<int> op){ return op.get() > 0; }, write, flse);
1

in
do

t cnt 9;

cnt = await
if (cnt ==
cnt = await

Example Il

streamR.read(512, buf);
@) break;
streamW.write(cnt, buf);

while (cnt > 9);

Feasibility

 We don’t have a C++ prototype, but...

— C#/VB is shipping a very similar implementation in
the next Visual Studio

* C# iterators, which has been shipping for many years,
are based on similar local transformations

— F# has supported similar features since v1.0
— Python also supports similar functionality
— The code transformations are simple and local

