

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

TLS and Parallelism

Pablo Halpern, Intel Corp

pablo.g.halpern@intel.com

20 April 2012

4/20/2012 1

http://software.intel.com/en-us/articles/optimization-notice/
mailto:pablo.g.halpern@intel.com

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Abstract

I present three different realistic use cases for
thread-local storage (TLS). Using examples in PPL,
Cilk, and TBB, I show that no one definition of the
thread_local storage class would suffice for all three

use cases, regardless of parallelism platform. We
thus need to broaden our support for TLS, with new
language and/or library features, in order to allow
parallel programming to co-exist with the different
uses of TLS. Finally, I propose a specific meaning
for the existing keyword, thread_local, matching

one of the three use cases.

4/20/2012 2

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Parallelism Terminology

• Task: A unit of work that can be scheduled and
executed asynchronously. Examples of tasks:

– Each iteration of a parallel loop

– The invokable argument of std::async

– The branches of a parallel_invoke in PPL or TBB

– The continuation of a cilk_spawn – I.e., the code that runs
between the cilk_spawn and the corresponding cilk_sync

• Worker: The member of a thread pool that
executes a task. Worker threads are typically
managed by a parallelism runtime library and are
re-used many times for many tasks.

4/20/2012 3

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Use case 1: Session-specific information

The Setup:
We are creating a web application which creates a
new thread for each user session. Session
information is stored in a thread-local variable:

4/20/2012 4

struct session_info {
 int user_id;
 unsigned long long crypt_key[2];
 …
};

thread_local session_info my_session;

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Use case 1: Serial code

4/20/2012 5

void process(record& r) {
 decrypt(r, my_session.crypt_key);
 …
}

void on_submit()
{
 record shopping_cart, order_history;
 …

 process(shopping_cart);
 process(order_history);
}

thread-local lookup

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Use case 1: Parallelized with PPL

4/20/2012 6

void process(record& r) {
 decrypt(r, my_session.crypt_key);
 …
}

void on_submit()
{
 record shopping_cart, order_history;
 …
 Concurrency::parallel_invoke(
 [&] { process(shopping_cart); },
 [&] { process(order_history); });
}

Want TLS bound to
user thread, not to

worker thread

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Use case 1: Parallelized with Cilk

4/20/2012 7

void process(record& r) {
 decrypt(r, my_session.crypt_key);
 …
}

void on_submit()
{
 record shopping_cart, order_history;
 …

 cilk_spawn process(shopping_cart);
 process(order_history);
}

Want TLS bound to
user thread, not to

worker thread

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Use Case 2: Dynamic Cache

The Setup:
We wish to save computation time in a
multithreaded application by caching previously-
computed values in a hashed container. Thread-
local storage provides a (seemingly) easy way to
implement such a cache without having to worry
about synchronizing between threads. The
occasional redundant computations caused by the
lack of a shared cache add an acceptable cost for
our data set.

4/20/2012 8

thread_local
my_cache_class<int,complex<double>> cache;

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Use case 2: Serial code

4/20/2012 9

std::complex<double> compute(int arg) {
 cache_iterator i = cache.find(arg);
 if (i != cache.end()) return i->second;
 return cache[i] = some expensive computation;
}

void g(int inputs[SZ], double outputs[SZ]) {
 for (int i = 0; i < SZ; ++i) {
 outputs[i] = compute(inputs[i]);
 }
}

thread-local lookup

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Use case 2: Parallelized with Cilk

4/20/2012 10

std::complex<double> compute(int arg) {
 cache_iterator i = cache.find(arg);
 if (i != cache.end()) return i->second;
 return cache[i] = some expensive computation;
}

void g(int inputs[SZ], double outputs[SZ]) {
 cilk_for (int i = 0; i < SZ; ++i) {
 outputs[i] = compute(inputs[i]);
 }
}

Want TLS bound to worker

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Use case 2: Parallelized with TBB

4/20/2012 11

std::complex<double> compute(int arg) {
 cache_iterator i = cache.find(arg);
 if (i != cache.end()) return i->second;
 return cache[i] = some expensive computation;
}

void g(int inputs[SZ], double outputs[SZ]) {
 parallel_for(0, SZ, 1, [&](int i) {
 outputs[i] = compute(inputs[i]);
 }
}

Want TLS bound to worker

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Use case 3: Task-specific variables

The Setup:
We start with a function that receives its argument
via a global variable (to avoid parameter-
proliferation). The value of the global is set in the
caller before the call.

4/20/2012 12

record g_record; // Global

void process_record() {
 int id = g_record.id;
 …
} Argument via global variable

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Use case 3: Serial code

Process multiple records in a loop.

4/20/2012 13

extern record g_record; // Global

void g() {
 for (int i = 0; i < num_recs; ++i) {
 init_record(g_record);
 g_record.id = i;
 …
 process_record(); // Process g_record

 }
}

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Use case 3: Naïve Parallelization

Process multiple records in a parallel loop.

4/20/2012 14

extern record g_record; // Global

void g() {
 cilk_for (int i = 0; i < num_recs; ++i) {
 init_record(g_record);
 g_record.id = i;
 …
 process_record(); // Process g_record

 }
}

Races!
Each

iteration is
a separate

task

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Use case 3: Parallelization with TLS

Mitigate races using TLS

4/20/2012 15

extern thread_local record g_record;

void g() {
 cilk_for (int i = 0; i < num_recs; ++i) {
 init_record(g_record);
 g_record.id = i;
 …
 process_record(); // Process g_record

 }
} Keep last value of g_record. How do we

make other workers destroy their copies?

Want per-
worker TLS

(sort of)

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Analysis: Comparing use cases 1 & 2

• Use case 1: Session-specific information

– All parallel tasks share a common user-level TLS object.

– The Thread in Thread-local refers to the user-created
std::thread (or main thread), not to the system-created

worker thread.

– If a task writes to the TLS carelessly, it could cause a race.
(Parallelism can always create races if care is not taken.)

• Use case 2: Dynamic Cache

– Each worker has its own copy of each TLS object.

– The Thread in Thread-local refers to the worker thread, not
necessarily the user-created std::thread.

– Tasks can still race on TLS, but that would require
communicating addresses across tasks.

4/20/2012 16

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Analysis: Use case 3

• Use case 3: Task-specific variables

– In the parallel code, each worker has its own copy of each
TLS object, as in use case 2.

– In the serial code, only one object should remain, as in use
case 1.

– Ideally, the T in TLS refers to Task rather than Thread for
the specified variable.

– The Cilk Plus library provides a holder hyperobject (similar
to a reducer hyperobject) that implements task-local
storage.

4/20/2012 17

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

What kind of TLS do we need?

• The three use cases described here show that we
need:

1. Thread-local storage shared by all the tasks executed by
a user-created thread.

2. Worker-local storage that is owned by the system
workers and which might survive any given task or user-
created thread.

3. Task-local storage that acts like worker-local storage but
is deallocated at the end of a parallel task.

4/20/2012 18

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

What should thread_local specify?

• The thread_local storage class was introduced in
C++11 at the same time as std::thread.

• The concepts of thread and thread-local should be
consistent.

• Therefore, thread_local should specify that the
variable is specific to an std::thread (as per use

case 1).

4/20/2012 19

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Conclusions

• No single concept of thread local storage suffices
for all existing and anticipated use cases.

• We will need a task formalism and possibly a
worker formalism in addition to the existing thread
formalism.

• User-thread-local, worker-local, and task-local
storage should all be available via language and/or
library features.

4/20/2012 20

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners. 4/20/2012 21

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Optimization Notice

4/20/2012 22

Optimization Notice

Intel® compilers, associated libraries and associated development tools may include or utilize options that
optimize for instruction sets that are available in both Intel® and non-Intel microprocessors (for example
SIMD instruction sets), but do not optimize equally for non-Intel microprocessors. In addition, certain
compiler options for Intel compilers, including some that are not specific to Intel micro-architecture, are
reserved for Intel microprocessors. For a detailed description of Intel compiler options, including the
instruction sets and specific microprocessors they implicate, please refer to the “Intel® Compiler User and
Reference Guides” under “Compiler Options." Many library routines that are part of Intel® compiler products
are more highly optimized for Intel microprocessors than for other microprocessors. While the compilers and
libraries in Intel® compiler products offer optimizations for both Intel and Intel-compatible microprocessors,
depending on the options you select, your code and other factors, you likely will get extra performance on
Intel microprocessors.

Intel® compilers, associated libraries and associated development tools may or may not optimize to the same
degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include Intel® Streaming SIMD Extensions 2 (Intel® SSE2), Intel® Streaming SIMD Extensions 3
(Intel® SSE3), and Supplemental Streaming SIMD Extensions 3 (Intel® SSSE3) instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are
intended for use with Intel microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining the best
performance on Intel® and non-Intel microprocessors, Intel recommends that you evaluate other compilers
and libraries to determine which best meet your requirements. We hope to win your business by striving to
offer the best performance of any compiler or library; please let us know if you find we do not.

Notice revision #20101101

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Legal Disclaimer

4/20/2012 23

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Performance tests and ratings are measured using specific computer systems and/or components
and reflect the approximate performance of Intel products as measured by those tests. Any
difference in system hardware or software design or configuration may affect actual performance.
Buyers should consult other sources of information to evaluate the performance of systems or
components they are considering purchasing. For more information on performance tests and on
the performance of Intel products, reference www.intel.com/software/products.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Atom, Centrino Atom Inside, Centrino
Inside, Centrino logo, Cilk, Core Inside, FlashFile, i960, InstantIP, Intel, the Intel logo, Intel386,
Intel486, IntelDX2, IntelDX4, IntelSX2, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside,
Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel
NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel
XScale, Itanium, Itanium Inside, MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium
Inside, skoool, Sound Mark, The Journey Inside, Viiv Inside, vPro Inside, VTune, Xeon, and Xeon
Inside are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Copyright © 2011. Intel Corporation.

http://intel.com/software/products

http://software.intel.com/en-us/articles/optimization-notice/
http://www.intel.com/software/products
http://intel.com/software/products

