
Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

2012-05-08
Justin Gottschlich on behalf

of the C++ TM Drafting Group

Transactional Language
Constructs for C++

vs.

2 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Overview

Use cases: where is TM most useful?

Usability: is TM easier than locks?

Performance: is TM fast enough?

3 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Use Cases

4 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Locks are Impractical for
Generic Programming

Thread 1:
m1.lock();
m2.lock();
…

Thread 2:
m2.lock();
m1.lock();
…

+ = deadlock

What about Thread 1 + A thread running f():
template <class T>
void f(T &x, T y) {
 unique_lock<mutex> _(m2);
 x = y;
}

Easy. Order Locks.
Now let’s get slightly more real:

What locks does x = y acquire?

?

5 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

What locks do x = y acquire?

Depends on the type T of x and y.
–The author of f() shouldn’t need to know.

– That would violate modularity.

–But lets say it’s shared_ptr<TT>.
– Depends on locks acquired by TT’s destructor.

– Which probably depends on its member destructors.

– Which I definitely shouldn’t need to know.

– But which might include a shared_ptr<TTT>.
– Which acquires locks depending on TTT’s destructor.

– Whose internals I definitely have no business knowing.
– …

 And this was for an unrealistically simple f()

We have no straightforward rules for avoiding
deadlock.
– In practice: Test & fix?

template <class T>
void f(T &x, T y) {
 unique_lock<mutex> _(m2);
 x = y;
}

6 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Transactions Naturally Fit
Generic Programming Model

Composable, no ordering constraints

f() implementation:
template <class T>
void f(T &x, T y) {
 transaction {
 x = y;
 }
}

Class implementation:
class ImpT
{
 ImpT& operator=(ImpT T& rhs)
 {
 transaction {
 // handle assignment
 }
 }
};

Impossible to deadlock.

7 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Irregular Structures

 Irregular structures with low conflict
frequency

–E.g., graph applications (minimum spanning
forest sparse graph, VPR and FPGA)

–Advantages: concurrency and ease of
deadlock-avoidance, ease of programming

Operation by Thread 1

Operation by Thread 2

8 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Why Not Locks?

 If conflicts arise, fine-graining locking can
lead to deadlocks or degraded performance

Operation by Thread 1

Operation by Thread 2

How do you implement this?
Operations by both Thread 1 and 2

9 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Composition / Modularity
(Herb’s Opening Comments)

 Arbitrarily composable modular structures and
functions

– Advantages: modular design, code maintainability,
ease of programming (e.g., using STL)

transaction {
 // Search arbitrary structure A for arbitrary key K
 // If found, remove that item (X) from A
 X = remove(A,K);
 if (X != NULL)
 {
 // Depending on X’s value, put X in arbitrary structure B
 B = f(X->Value);
 insert(B,X);
 }
}

10 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Read-Mostly Structures

Read-mostly structures with frequent
read-only operations

–E.g. search structures

–Advantages: high concurrency, read-only
operations avoid writing (avoid unnecessary
cache coherence traffic)

Read-Only Operation by Thread 1

Read-Mostly Search Structure

Read-Only Operation by Thread 2

11 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Usability

12 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Two User Studies

 Is Transactional Programming Actually
Easier?

–Chris Rossbach, Owen Hofmann, Emmett Witchel

–3-year study of undergrad class (237 students)

–presented at PPoPP 2010

A Study of TM vs. Locks in Practice

–Victor Pankratius, Ali-Reza Adl-Tabatabai

–6 groups, each with 2 Masters students

–presented at SPAA 2011

13 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Error Rates by Defect Type

0%

10%

20%

30%

40%

50%

60%

70%

Y1 Y2 Y3

PD Rossbach

14 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Overall Error Rates

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Y1 Y2 Y3

Locks: 58-75%

TM: 8-20%

PD Rossbach

15 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Overall Error Rates: Year 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

PD Rossbach

16 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

A Study of Transactional
Memory vs. Locks in Practice

 “Explorative case study”

–Broad scope

–Less control, more realism

–Lessons learned on a case-by-case basis

–Programmed a desktop search engine

17 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Code

• Average LOC about the same

• TM teams have fewer LOC with parallel
constructs (2%-5% vs. 5%-11%)

PD Dr. Victor Pankratius

18 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Programming Effort

Less for TM

Increase for TM teams in last
weeks: Refactoring
transactions, performance
problems, experiments

PD Dr. Victor Pankratius

TM reduced
programming
effort by ~14%

19 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group PD Dr. Victor Pankratius

Performance
 TM3 outperforms

on indexing
performance and
most teams on
query
performance

 Demonstration
that TM
performance
need not be bad
in practice

20 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Performance

21 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Is TM Fast Enough?

Many different STMs with different goals
(and different guarantees)

–TL2: baseline state-of-the-art

–TinySTM: added safety guarantees (opacity)

–NOrec: generalized support of many features

–InvalSTM: contention-heavy programs

–SkySTM: scalable to upwards of 250 threads

How to choose?

–Use adaptive algorithm (Wang et al., HiPEAC’12)

–Change TM without changing client code

22 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Multiplayer games

More than 100k concurrent
players

 “Transactional Memory Support for Scalable
and Transparent Parallelization of Multiplayer
Games”

–Daniel Lupei, Bogdan Simion, Don Pinto, Mihai
Burcea, Matthew Misler, William Krick, Cristiana
Amza

–SynQuake, simulates Quake battles

–Software-only TM (STM)

–Presented at EuroSys 2010

 Game server is the bottleneck
PD Simion et al.

23 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Conflicting player actions
Game map

T1

T2

Need for
synchronization

PD Simion et al.

24 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Player actions
Compound action:

 - move, charge

 weapon and shoot

healthpack

ammunition

Requirement:
consistency and atomicity

of whole game action

PD Simion et al.

25 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Conservative locking

Subaction 1

Subaction 2

Subaction 3

Lock 1, Lock 2, Lock3

Unlock 1,2,3

G
A

M
E
 A

C
T

IO
N

Conservatively acquire
all locks at beginning

of action

Problem 1:
Unnecessarily long

conflict duration

PD Simion et al.

26 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Conservative locking

Conservative estimate of
impact range at

beginning of action

Problem 2:
Unnecessarily high

number of locked objects

PD Simion et al.

27 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Fine-grained locking?

Subaction 1

Subaction 2

Subaction 3

Lock 1

Unlock 1

Lock 2

Unlock 2

Lock 3

Unlock 3

G
A

M
E
 A

C
T

IO
N

Not possible !

Problem:
- No atomicity for

whole action

PD Simion et al.

28 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Fine-grained locking?

Subaction 1

Subaction 2

Subaction 3

Lock 1

Lock 2

Lock 3

Unlock 1, 2, 3

G
A

M
E
 A

C
T

IO
N

Not possible !

Problem:
- Deadlocks

PD Simion et al.

29 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

STM - Synchronization

Subaction 1

Subaction 2

Subaction 3

BEGIN Transaction

COMMIT Transaction

G
A

M
E
 A

C
T

IO
N

Problems solved:

- Deadlocks
- Atomicity

Handled automatically

PD Simion et al.

30 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

STM - Synchronization

Collision detection
optimized:

- split action into subactions

- perform collision detection
gradually for each subaction

PD Simion et al.

31 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Scalability 8 core machine

0
1 2 4 8 3 5 6 7

1

2

3

4

5

Threads

medium contention

high contention

low contention

N
o
r
m

a
li

z
e
d

 s
c
a
li

n
g

 f
a
c
to

r
 Locks

STM scales better in all 3 contention scenarios

1 2 4 8 3 5 6 7

Threads

STM

PD Simion et al.

32 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Processing Times
Medium

contention

PD Simion et al.

STM ~33% faster
than locks for 4-8
threads

33 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Conclusions

TM naturally aligns with generic
programming

Many problems are well-suited for TM

Early studies show TM to be easy to
program and less buggy than locks

Software-only TM can outperform locks

34 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Thank you! Questions?

Justin Gottschlich
justin.e.gottschlich@intel.com

mailto:justin.e.gottschlich@intel.com

