Transactional Language
Constructs for C++

VS.

2012-05-08
Justin Gottschlich on behalf
of the C++ TM Drafting Group

Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Overview

e Use cases: where is TM most useful?
 Usability: is TM easier than locks?

 Performance: is TM fast enough?

Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Use Cases

Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Locks are Impractical for
Generic Programming

Thread 1: Thread 2:

ml.Tock(); m2.lock(); —
m2.lock(); T ml.lock(Q); dealeCk

Easy. Order Locks.
Now let’s get slightly more real:

What about Thread 1 + A thread running £():

template <class T> ';)

void f(T &, T y) {
unique_lock<mutex> _(m2); -
X =Y,

}

What locks does x = y acquire?

Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

What locks do x = y acquire?

 Depends on the type T of x and v.

—The author of £() shouldn’t need to know.
— That would violate modularity.
- But lets say it's shared_ptr<TT>.
— Depends on locks acquired by TT's destructor.
— Which probably depends on its member destructors.
— Which I definitely shouldn’t need to know.

— But which might include a shared_ptr<TTT>.
— Which acquires locks depending on TTT's destructor.
— Whose internals I definitely have no business knowing.

e And th"i.s was for an unrealistically simple £()
 We have no straightforward rules for avoiding

deadIOCk- template <class T>
. : . Ve’ void (T &x, T y) {
In practice: Test & fix: unique. Tock<mutexs (m2):
X = Y;

}

Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Transactions Naturally Fit
Generic Programming Model

e Composable, no ordering constraints

f() implementation: Class implementation:
template <class T> class ImpT
void (T &x, T y) { {
transaction { ImpT& operator=(ImpT T& rhs)
X = Y; {
} transaction {
} // handle assignment
}
¥
b |

Impossible to deadlock.

Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Irregular Structures

* Irregular structures with low conflict
frequency

—-E.g., graph applications (minimum spanning
forest sparse graph, VPR and FPGA)

—Advantages: concurrency and ease of
deadlock-avoidance, ease of programming

Operation by Thread 1

Operation by Thread 2

Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Why Not Locks?

 If conflicts arise, fine-graining locking can
lead to deadlocks or degraded performance

How do you implement this?
Operations by both Thread 1 and 2

Operation by Thread 1

Operation by Thread 2

Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Composition / Modularity
(Herb’s Opening Comments)

e Arbitrarily composable modular structures and
functions

— Advantages: modular design, code maintainability,
ease of programming (e.g., using STL)

transaction {
// Search arbitrary structure A for arbitrary key K
// If found, remove that item (X) from A
X = remove(A,K);
if (X != NULL)
{

// Depending on X’s value, put X in arbitrary structure B
B = f(X->Value);
insert(B,X);

Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Read-Mostly Structures

 Read-mostly structures with frequent
read-only operations

—E.g. search structures

—Advantages: high concurrency, read-only
operations avoid writing (avoid unnecessary
cache coherence traffic)

Read-Only Operation by Thread 1 Read-Only Operation by Thread 2

Read-Mostly Search Structure

Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Usability

Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Two User Studies

e s Transactional Programming Actually
Easier?

- Chris Rossbach, Owen Hofmann, Emmett Witchel
- 3-year study of undergrad class (237 students)
—-presented at PPoPP 2010

e A Study of TM vs. Locks in Practice
—Victor Pankratius, Ali-Reza Adl-Tabatabai
-6 groups, each with 2 Masters students
—-presented at SPAA 2011

Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Error Rates by Defect Type

70%
60%
50%
40%
30%
20%
10%

0%

HMY]1l mY2 Y3

13 PD Rossbach Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Overall Error Rates

Locks: 58-75%

CO00000000
s10.449 Jo uoiuodoud

HMY]1l mY2 Y3

C++ TM Drafting Group

~—~
i
<t
(48]
(90)]
=z
~
+
+
O
|-
]
y“
0
)
O
3
j-
-
(9]
c
o
O
()
(®)]
©
=
()}
=
©
-
‘©
c
o
s}
O
©
1))
c
©
j .
=

14 PD Rossbach

Overall Error Rates: Year 2

0.8

0.7
0.6
0.5
0.4
0.3
0.2
i
el _

Proportion of errors

15 PD Rossbach Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

A Study of Transactional
Memory vs. Locks in Practice

* “Explorative case study”
—Broad scope
—Less control, more realism
—Lessons learned on a case-by-case basis
—Programmed a desktop search engine

Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Code

o Average LOC about the same

e TM teams have fewer LOC with parallel
constructs (2%-5% vs. 5%-11%)

Total Lines of Code
(excl. comments,

blank lines)

2014

Locks Teams
L2
2285

2182

1501

T™M Teams

3052

avg: 2160 stddev: 137

(pthread* + tm_*)

5%

LOC pthread* 157 261 120 23 12
8% 11% 5% 1% 1% 0%
LOC tm_* 0 0 0 36 22 139
5 5%

LOC with paral. cons 157 261 120 53 45 15

17 PD Dr. Victor Pankratius

Transactional Language Constructs for C++ (N3341)

C++ TM Drafting Group

Programming Effort

Total Effort (Person Hours)
‘ @ég 350 - Accumulated Person Hours e
.006 & +Q$ Team L1
\o‘\} P S 300 1 — - — - Team TM1
& ¢ & Y S
FIEIES) IS S S &/ — — — Team TM2
€/ & X/ ?§ /S /O A 250 ; -
Team L1] 3] o] sof 1o 14] 29 of 151 Team L2 /
Team L3 24| 1| 17| 72| 7| s2| 16| 19| 208 Team L3 ;
Team L2 2] ol a4l veel o) o] cadl ol saal AN mamm ool
Team TM3 18] 4] 12| 55| 6] 18] 19 9| 141
Team TM1 71 e 33| 74f 18] 38| 22 10' 208] 150 -
Team TM2 6| 6| 21| 139 12| 39| 38 o 261
sum all % 32 106 616 65 182 172 40 1303 . |
7% 2% 8% 47% 5% 14% 13% 3% 100%
— sumL 59 16 40 348 29 87 93 21 693
m = -
9% 2% 6% 50% 4% 13% 13% 3% 100%
sum T™ s 16 e 2 3% s w60 | TM reduced . Project Week
5% 3% 1% 44% 6% 16% 13% 3% 100% o MO e
programming VT8N 0
effort by ~14% |teamsin last
wWeeKs: Keraccuri ng

Less for TM transactions, performance
problems, experiments

18 PD Dr. Victor Pankratius Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Performance

10000

e Al TM3 outperforms
i on indexing

e performance and
most teams on
query

" performance

Execution time [s]
3

Indexing Threads
100 T T T

1 2 3 4 5 6 7 8 9 16 32 64

Query Performance BTeaml1 BTeaml2 HTeamlL3 ETeamTM2 HTeam TM3

1000
@ 100 -
D
-E 10 .
5 * Demonstration
i that TM

performance

0,001

! need not be bad

1 12 13 14 15 16 17 18 1 H
IN practice

Query type
1 one frequent word 6 frequent text passage (3 words) 11 wildcard rare (*word) 16 exclusion (1 frequent word)
2 one rare word 7 rare text passage (3 words) 12 AND frequent (2words) 17 exclusion (1 rare word)
3 one random word 8 wildcard frequent (word") 13 AND rare (2 wards) 18 AND four characters witn wildcards
4 frequent text passage (2 words) 9 wildcard rare (word®) 14 AND frequent (3 words)
5 rare text passage (2 words) 10 wildcard frequent {"word) 15 AND rare (3 words)

19 PD Dr. Victor Pankratius Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Performance

Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Is TM Fast Enough?

 Many different STMs with different goals
(and different guarantees)

-TL2: baseline state-of-the-art

-TinySTM: added safety guarantees (opacity)
—NOrec: generalized support of many features
—-InvalSTM: contention-heavy programs
—SkySTM: scalable to upwards of 250 threads

e How to choose?
—Use adaptive algorithm (Wang et al., HIPEAC'12)
- Change TM without changing client code

Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Multiplayer games

* More than 100k concurrent S
players o T e\

* “Transactional Memory Support for Scalable
and Transparent Parallelization of Multiplayer
Games”

—Daniel Lupei, Bogdan Simion, Don Pinto, Mihai
Burcea, Matthew Misler, William Krick, Cristiana
Amza

-SynQuake, simulates Quake battles
—-Software-only TM (STM)
- Presented at EuroSys 2010

Game server is the bottleneck

22 PD Simion et al. Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Conflicting player actions

Game map

Need for
synchronization

23 PD Simion et al. Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Player actions

Compound action:

- move, charge

weapon and shoot

24 PD Simion et al. Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Conservative locking

/ (Lock 1, Lock 2, Lock3)

GAME ACTION
A

\ [Unlock 1,2,3]

25 PD Simion et al. Transactional Language Constructs for C++ (N3341) C++T™M Drafting Group

Conservative locking

26 PD Simion et al. Transactional Language Constructs for C++ (N3341) C++T™M Drafting Group

Fine-grained locking?

/ [Lock 1

| Unlock 1 |
| Lock2 |

| Unlock 2 |
| Lock3 |

\[Unlock 3 |

GAME ACTION
A

27 PD Simion et al. Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Fine-grained locking?

/ [Lock 1

5
= [Lock2 |
Q
% Subaction 2 |
<
=
@)

| Lock3 |

\ [Unlock 1, 2, 3]

28 PD Simion et al. Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

STM - Synchronization

/[BEGIN Transaction |

GAME ACTION
AN

| COMMIT Transaction |

29 PD Simion et al. Transactional Language Constructs for C++ (N3341) C++T™M Drafting Group

STM - Synchronization

30 PD Simion et al. Transactional Language Constructs for C++ (N3341) C++T™M Drafting Group

Scalability

==fll== |OW contention
O medium contention
=== high contention

Locks STM

4]

\

|

Normalized scaling factor
(6}

1 —— o3
| |
Y 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Threads Threads

31 PD Simion et al. Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

32

Processing Times

Processing Time (s)

PD Simion et al.

300

250

200

150

100

50

afpem | ocks
\ =-=STM

STM ~33% faster

than locks for 4-8
threads

1 2 3 4 5 6 7 8
Number of threads

Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Conclusions

 TM naturally aligns with generic
programming

* Many problems are well-suited for TM

e Early studies show TM to be easy to
program and less buggy than locks

e Software-only TM can outperform locks

Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Thank you! Questions?

Justin Gottschlich
justin.e.gottschlich@intel.com

ansactional Language Constructs for C++ (N3341) C++ TM Drafting Group

mailto:justin.e.gottschlich@intel.com

