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Disclaimer 

• Performance data shown here is preliminary 

• It is work in progress 

• Peer review still ongoing, conclusions may change 
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HW Resources for Parallel Execution  

Vectors 

Array Notations 

SIMD loops 

Auto Vec?? 

 

Tasks 

Cilk, TBB, PPL 

OpenMP 

Auto Par?? 
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Parallel tasks with SIMD kernels 
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threads 
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instructions 
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SIMD Instructions Compute Multiple 

Operations per Instruction 

3 

256b Intel® Advanced Vector 
Extensions (Intel® AVX) 
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Intel® Next Generation microarchitecture codename Sandy Bridge  
256-bit Multiply + 256-bit ADD + 256-bit Load per clock… 

Double your FLOPs with great energy-efficiency 
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SIMD Instructions Compute Multiple Operations 

per Instruction 

Intel® Many Integrated Core Architecture 
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Wide SIMD to support data parallel programming 
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Intel® Many Integrated Core Architecture 
An Intel Co-Processor Architecture 

VECTOR 
IA CORE 
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Many Core and many, many core threads, wider vectors 

Standard Intel® Architecture programming and memory model  
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Programmer Personalities 

Different programmers want different 
levels of control over how their 

program executes  
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Programmer perspective vs. HW perspective 

• Ability to program tasks vs. vectors explicitly 

– Requirement to be able to program the vectors with a single 

thread semantic guarantee 

– Tasking is expressed at an outer level 

– Have been burned by over subscription, don’t rely on 

composability guarantees 

• Ability to express intent for parallel execution and let 

the compiler map to HW resources 

– Parallel loops, utilize all HW resources 

– Elemental functions, or SPMD execution model 

– Implementation of these constructs with only cores is non 

competitive 

– Lower performance than other languages, e.g. OpenCL kernels 

 

Data parallelism uses both cores and vectors 

Therefore needs to compose with tasking 
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Currently Available 

• Auto vectorizers 

• Intrinsics 

• Fortran 

• OpenMP – coming soon 

• OpenCL 
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Components of Intel® Cilk™ Plus 

•Easy to learn, use and maintain, no programming overhead 

•Execution of parallel code is equivalent to execution on a single thread 

•Very low run time overhead  

3 keywords for 
tasking 

•Provide local views of global data to allow reduction operation w/o data races 

•No use of locks 

•Can be used independent of program control flow 
Hyper Objects 

•Mathematical operations on arrays w/o constrained serial ordering 

•Implementation utilizes the vector ISA Array notations 

•Write standard C/C++ scalar 

•Compiler generates a version to operate on a short vector of arguments 

•The implementation can also spawn instances onto multiple cores 

Elemental 
Functions 

•Write standard C/C++/FTN loops 

•Guaranteed vector implementation by the compiler Pragma SIMD 
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Significance of vectorization - RTM stencil 

1 2 4 8 16 32 64 

Cilk 65.64 33.18 16.83 9.13 13.17 5.04 5.76 

Cilk+vec 12.96 6.4 3.38 2.06 2.23 1.56 1.73 

OpenCL 17.72 9.5 4.73 2.51 2.84 1.65 1.89 

TBB 74.66 32.93 16.91 8.88 12.42 6.26 6.29 

TBB+vec 17.49 8.64 4.38 2.29 2.78 1.81 2.09 

• In both Cilk+vec and TBB+vec, significant speed up 

over tasking alone, at all thread counts 

• Without vectorizaiton, OpenCL (SPMD model) wins 

over C++ 
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And now with pictures 
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Significance of vectorization - AObench  

Nthreads Cilk  Cilk + simd improvement TBB TBB + simd improvement 

1 18.93 13.9 0.734284 16.95 13.81 0.814749 

2 9.07 6.83 0.753032 8.49 6.84 0.805654 

4 4.66 3.37 0.723176 4.34 3.41 0.785714 

8 2.12 1.81 0.853774 2.14 1.91 0.892523 

16 1.71 1.35 0.789474 1.63 1.44 0.883436 

32 0.81 0.7 0.864198 0.83 0.72 0.86747 

64 0.6 0.52 0.866667 0.62 0.53 0.854839 

Vector level parallelism provides significant improvement over thread level parallelism 



Significance of vectorization – Binomial Lattice   

Vector level parallelism provides significant improvement over thread level parallelism 

nthreads cilk cilk + cean improvement

1 18.39 17.62 0.95812942

2 9.45 9.06 0.95873016

4 4.84 4.64 0.95867769

8 2.57 2.45 0.95330739

16 2.81 2.17 0.77224199

32 1.15 1.02 0.88695652

64 0.98 0.76 0.7755102



Significance of vectorization – Track Fitting   

Vector level parallelism provides significant improvement over thread level parallelism 

nthreads cilk cilk_simd opencl tbb tbb_simd

1 47.27 24.94 16.96 43.04 22.43

2 24.02 12.79 8.74 20.9 11.49

4 12.38 6.63 4.8 10.7 5.77

8 6.85 3.47 2.85 5.45 2.94

16 6.17 3.21 2.61 5.2 2.71

32 2.48 1.41 1.66 2.02 1.16

64 2.08 1.19 1.56 1.55 0.93
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Array notations Example: Dot product 

Serial version 

float dot_product(unsigned int sz, float A[sz], float B[sz]) 

{ 

    int i; 

    float dp=0.0f; 

    for (i=0; i<size; i++) { 

         dp += A[i] * B[i]; 

    } 

    return dp; 

} 

 

Array Notation version 

float dot_product(float A[], float B[]) 

{ 

    return __sec_reduce_add(A[:] * B[:]); 

} 

 

15 
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Elemental functions example: Black Scholes 

Optimal utilization of cores and vectors 

__declspec(vector) 

double option_price_call_black_scholes(double S, double K,double r,double sigma, double 
time) 

{ 

    double time_sqrt = sqrt(time); 

    double d1 = (log(S/K)+r*time)/(sigma*time_sqrt)+0.5*sigma*time_sqrt; 

    double d2 = d1-(sigma*time_sqrt); 

    return S*N(d1) - K*exp(-r*time)*N(d2); 

} 

 

cilk_for (int i=0; i < NUM_OPTIONS; i++) { 
           call_serial[i] = option_price_call_black_scholes(S[i], K[i], r, sigma, time[i]); 

} 
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Invoking Elemental Functions 

 

 

Constrcut Example Semantics 

Standard for loop for (j = 0; j < N; j++) { 
    a[j] = my_ef(b[j]); 
} 

Single thread, 
auto vectorization 

#pragma simd #pragma simd 
for (j = 0; j < N; j++) { 
    a[j] = my_ef(b[j]); 
} 

Single thread, 
Guaranteed to use the 
vector version 

cilk for loop cilk_for (j = 0; j < N; j++) { 
    a[j] = my_ef(b[j]); 
} 

Both vectorization and 
concurrent execution 

Array notation a[:] = my_ef(b[:]); Vectorization. 
Concurrency allowed 
by not yet 
implemented 

The execution of the elemental functions is serial with respect to  
the code that follows the invocation. 
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SIMD loop example: Mandelbrot 

 
// vectorizable outer loop 
#pragma simd  
for (i=0; i<n; i++) { 
    complex<float> c = a[i];  
    complex<float> z = c; 
    int j = 0; 
    while ((j < 255)  
         && (abs(z)< limit)) { 
         z = z*z + c; 
         j++; 
    }; 
    color[i] = j; 
} 

•This program results in good 
utilization of vector level 
parallelism and provides 
measureable speedups. 

•Arguably out of reach of auto 
vectorizers 

•Outlining the loop body can 
be written as an elemental 
function. However, in line code 
is normally more efficient. 



INTEL CONFIDENTIAL 

A simd loop 

• Loops count number of elements that are 

inside/outside Mandelbrot set 

19 6/16/2012 

 for (int32_t y = 0; y < ImageHeight; ++y) { 
#pragma simd reduction(+:num_out) reduction(+:num_in) 
        for(int32_t x = 0; x < ImageWidth; ++x) { 
            if (count[y][x] < max_iter) { 
                num_out += 1; 
            } 
            else { 
                num_in += 1; 
            } 
        } 
    }         
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Capabilities 

• Uniform values – same across all vector lanes 

• Linearly increasing values, inductive 

• Reductions 

 

• x += something  an induction, a reduction, other? 
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Legal Disclaimer 
• INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, 

EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED 
BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH 
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED 
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL® PRODUCTS INCLUDING LIABILITY OR WARRANTIES 
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY 
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR 
USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.  

• Intel may make changes to specifications and product descriptions at any time, without notice. 

• All products, dates, and figures specified are preliminary based on current expectations, and are subject to 
change without notice. 

• Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which 
may cause the product to deviate from published specifications. Current characterized errata are available 
on request. 

• Nehalem, Westmere, Sandy Bridge and other code names featured are used internally within Intel to 
identify products that are in development and not yet publicly announced for release.  Customers, licensees 
and other third parties are not authorized by Intel to use code names in advertising, promotion or marketing 
of any product or services and any such use of Intel's internal code names is at the sole risk of the user  

• Performance tests and ratings are measured using specific computer systems and/or components and 
reflect the approximate performance of Intel products as measured by those tests.  Any difference in 
system hardware or software design or configuration may affect actual performance.   

• Intel, Core, Itanium and the Intel logo are trademarks of Intel Corporation in the United States and other 
countries.   

• *Other names and brands may be claimed as the property of others. 

• Copyright © 2010 Intel Corporation. 
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Optimization Notice 

6/16/2012 23 

Intel® Composer XE 2011 includes compiler options that optimize for instruction sets that 
are available in both Intel® and non-Intel microprocessors (for example SIMD instruction 
sets), but do not optimize equally for non-Intel microprocessors. In addition, certain 
compiler options for Intel® Composer XE 2011 are reserved for Intel microprocessors.  For a 
detailed description of these compiler options, including the instruction sets they implicate, 
please refer to "Intel® Composer XE 2011 Documentation > Intel® C++ Compiler 12.0 User 
and Reference Guides > Compiler Options." Many library routines that are part of Intel® 
Composer XE 2011 are more highly optimized for Intel microprocessors than for other 
microprocessors.  While the compilers and libraries in Intel® Composer XE 2011 offer 
optimizations for both Intel and Intel-compatible microprocessors, depending on the options 
you select, your code and other factors, you likely will get extra performance on Intel 
microprocessors. 

While the paragraph above describes the basic optimization approach for Intel® Composer 
XE 2011, with respect to Intel's compilers and associated libraries as a whole, Intel® 
Composer XE 2011 may or may not optimize to the same degree for non-Intel 
microprocessors for optimizations that are not unique to Intel microprocessors. These 
optimizations include Intel® Streaming SIMD Extensions 2 (Intel® SSE2), Intel® Streaming 
SIMD Extensions 3 (Intel® SSE3), and Supplemental Streaming SIMD Extensions 3 (Intel® 
SSSE3) instruction sets and other optimizations. Intel does not guarantee the availability, 
functionality, or effectiveness of any optimization on microprocessors not manufactured 
by Intel. Microprocessor-dependent optimizations in this product are intended for use with 
Intel microprocessors. 

Intel recommends that you evaluate other compilers to determine which best meet your 
requirements.  
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A Linear Argument  

• An argument whose value increments linearly across the 

projection 

• When used as an index in loads and stores, linear 

makes the difference between ld/st and gather / scatter 

__declspec (vector (linear(i:1)))  
 
void add_vec (int i) 
{  
           a[i] = b[i] + c[i]; 
} 
 

--------------------------------------- 
for (int i = 0; i < N; ++i) { 
    add_vec(i); 

}  
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A Linear Argument  

.B5.1:                          ; Preds .B5.0 
        movdqu    xmm1, XMMWORD PTR [_b+eax*4] 
        movdqu    xmm0, XMMWORD PTR [_c+eax*4] 
        paddd     xmm1, xmm0 
        movdqu    XMMWORD PTR [_a+eax*4], xmm1 
        ret 

push      edi 
movd      eax, xmm0 
pshuflw   xmm1, xmm0, 238 
punpckhqdq xmm0, xmm0 
movd      edx, xmm1 
pshuflw   xmm1, xmm0, 238 
movd      xmm3, DWORD PTR [_b+eax*4] 
movd      ecx, xmm0 
movd      edi, xmm1 
movd      xmm2, DWORD PTR [_b+edx*4] 
punpcklqdq xmm3, xmm2 
movd      xmm2, DWORD PTR [_b+ecx*4] 
movd      xmm0, DWORD PTR [_b+edi*4] 
punpcklqdq xmm2, xmm0 
shufps    xmm3, xmm2, 136 
movd      xmm1, DWORD PTR [_c+eax*4] 
movd      xmm2, DWORD PTR [_c+edx*4] 
punpcklqdq xmm1, xmm2 
movd      xmm2, DWORD PTR [_c+ecx*4] 
movd      xmm0, DWORD PTR [_c+edi*4] 
punpcklqdq xmm2, xmm0 
shufps    xmm1, xmm2, 136 
paddd     xmm3, xmm1 
pshuflw   xmm1, xmm3, 238 
movd      DWORD PTR [_a+eax*4], xmm3 
punpckhqdq xmm3, xmm3 
movd      DWORD PTR [_a+edx*4], xmm1 
movd      DWORD PTR [_a+ecx*4], xmm3 
pshuflw   xmm3, xmm3, 238 
movd      DWORD PTR [_a+edi*4], xmm3 
pop       edi 
ret 
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A Scalar Argument 

• An argument whose value is the same for all lanes 

• When used as a indexbase in loads and stores, scalar 

makes the difference between ld/st and gather / scatter 

__declspec (vector (linear(i:1)),scalar(a,b,c))  
 
void add_vec (float *a, float *b, float *c, int i) 
{  
           a[i] = b[i] + c[i]; 
} 
 

--------------------------------------- 
for (int i = 0; i < N; ++i) { 

    add_vec(i); 
}  
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A Scalar Argument  

.B5.1:                          ; Preds .B5.0 
        movups    xmm1, XMMWORD PTR [ecx+edi*4] 
        movups    xmm0, XMMWORD PTR [edx+edi*4] 
        addps     xmm1, xmm0 
        movups    XMMWORD PTR [eax+edi*4], xmm1 
        ret 

.B2.1:                          ; Preds .B2.0 
        push      ebp 
        mov       ebp, esp 
        and       esp, -16 
        sub       esp, 32 
        lea       edx, DWORD PTR [1+eax] 
        movaps    XMMWORD PTR [16+esp], xmm6 
        lea       ecx, DWORD PTR [2+eax] 
        movd      xmm6, eax 
        add       eax, 3 
        movaps    XMMWORD PTR [esp], xmm7 
        movd      xmm3, edx 
        punpcklqdq xmm6, xmm3 
        movd      xmm7, ecx 
        movd      xmm3, eax 
        punpcklqdq xmm7, xmm3 
        shufps    xmm6, xmm7, 136 
        pslld     xmm6, 2 
        paddd     xmm1, xmm6 
        paddd     xmm2, xmm6 
        movd      edx, xmm1 
        paddd     xmm0, xmm6 
        pshuflw   xmm7, xmm1, 238 
        punpckhqdq xmm1, xmm1 
        movd      ecx, xmm7 
        movd      eax, xmm1 
        pshuflw   xmm1, xmm1, 238 
        movd      xmm3, DWORD PTR [edx] 
        movd      edx, xmm1 
        movd      xmm7, DWORD PTR [ecx] 
        punpcklqdq xmm3, xmm7 
        movd      xmm7, DWORD PTR [eax] 
        movd      xmm1, DWORD PTR [edx] 
        movd      ecx, xmm2 
        punpcklqdq xmm7, xmm1 
        shufps    xmm3, xmm7, 136 
        pshuflw   xmm7, xmm2, 238 
        punpckhqdq xmm2, xmm2 
        movd      eax, xmm7 
        movd      edx, xmm2 
        pshuflw   xmm2, xmm2, 238 
        movd      xmm1, DWORD PTR [ecx] 
        movd      ecx, xmm2 
        movd      xmm7, DWORD PTR [eax] 
        punpcklqdq xmm1, xmm7 
        movd      xmm7, DWORD PTR [edx] 
        movd      xmm2, DWORD PTR [ecx] 
        punpcklqdq xmm7, xmm2 
        shufps    xmm1, xmm7, 136 
        movd      eax, xmm0 
        addps     xmm3, xmm1 
        pshuflw   xmm6, xmm0, 238 
        punpckhqdq xmm0, xmm0 
        movd      ecx, xmm0 
        pshuflw   xmm0, xmm0, 238 
        movd      DWORD PTR [eax], xmm3 
        movd      edx, xmm6 
        movd      eax, xmm0 
        pshuflw   xmm1, xmm3, 238 
        punpckhqdq xmm3, xmm3 
        pshuflw   xmm0, xmm3, 238 
        movaps    xmm6, XMMWORD PTR [16+esp] 
        movaps    xmm7, XMMWORD PTR [esp] 
        movd      DWORD PTR [edx], xmm1 
        movd      DWORD PTR [ecx], xmm3 
        movd      DWORD PTR [eax], xmm0 
        mov       esp, ebp 
        pop       ebp 
        ret 
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Vector Length 

•How many elements should be 

processed in each invocation 
–The “vector length” 

•The VL needs to be determined 

independently and consistently at 

the call sites and at the definition. 

•Default: size of HW register / size 

of return type 

 

•What if: size of return type ≠ size 

of prevalently used type inside the 

function  

 

 

__declspec (vector)  
float add_vec (float x, float y) 
{  

  return x+y; 
} 

 
---------------------------------- 
__declspec(vector) 
double add_vec(double x, double y) 
{ 
    return x+y; 
} 

__declspec (vector)  
double add_vec (double x, double y) 
{  

  return sinf((float) x)         
    +sinf((float) y); 

} 
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Track Fitting 

• Track finding involves associating a set of readings with the likely trajectory 
of a specific particle. Track fitting then takes those sets and determines a 
particle’s position, direction and the magnitude of its momenta at any time 
by fitting the readings to a mathematical description of the trajectory. 

 

• A charged particle moving in a homogeneous magnetic field experiences a 
sideways force (the Lorentz force) proportional to the strength of the 
magnetic field, the component of the velocity that is perpendicular to the 
magnetic field and the charge of the particle. In this way, the trajectory 

• such a particle follows is helical along an axis parallel to the direction of 
the magnetic field. 

 

• This perfectly helical behaviour is a simplification, as the magnetic field is 
rarely homogeneous, which deforms the helix. Also, as the particle moves, 
it is subject to multiple Coulomb scattering, which introduces variances in 
the momentum and makes the helical trajectory less crisp. 

• Finally, the particle loses energy as it moves, and correspondingly the 
radius of the helix it describes contracts. 
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RTM Stencil 
Description 

Stencil computation is the basis for the reverse time migration algorithm in seismic 
computing.  The underlying mathematical problem is to solve the wave equation using 
finite difference method. This benchmark computes a 25-point 3D stencil.   

  

Mathematical Details 

It’s essentially a 3D convolution with a small compact operator.  It’s quite stable 
numerically. 

  

Pseudocode 

void loop_stencil(int t0, int t1, int x0, int x1, int y0, int y1, int z0, int z1) 

{ 

     // March forward in time 

     for(int t = t0; t < t1; ++t) { 

        // March over 3D Cartesian grid 

        for xyz in [x0,x1)[y0,y1)[z0,z1] do { 

            A’[xyz] = 25-point stencil applied to A, centered at point xyz. 

        } 

    } 

} 
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AOBench 

AOBench is a popular visual compute benchmark that has 
been ported to dozens of programming models across 
dozens of platforms. Although not truly representative as a 
contemporary real time rendering approach, AOBench’s per 
pixel computations, ray casting, and object intersection 
tests, are quite similar to the computations often performed 
in advanced pixel shaders of high performance real time 
rendering engines.  

Computationally, AOBench can be described as a simple 
ray trace kernel applied to a fixed test scene of 3 spheres 
and 1 plane. For each primary ray that intersects an object, 
a simple ambient occlusion approximation is computed by 
random ray casting back into the scene.  
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Binomial Lattice 
Option pricing is the problem of computing the expected present value of a financial 
instrument (most usually stocks, but also interest rates, foreign exchange rates, bonds, 
etc).  This is based on a forecast of cashflows over a specific time horizon.  The expected 
present value is used to determine the fair premium of an option on that instrument.  

The binomial (tree or lattice) option pricing model is a confluent discretization of a 
Brownian motion process.  Note that for a large number of steps the binomial 
distribution approximates a Gaussian distribution.  The discretization takes the form of 
a recombinant tree, where each level of the tree represents the set of values the 
underlying can take at specific points in time in the lifetime of the option.    

The dataflow of this algorithm is shown in the figure to the left, and pseudocode is given 
in the next section.   Values at the base of the lattice are computed first, and then 
propagated up the lattice.  The expected present value is computed in the topmost node. 

Although this algorithm uses the (simplistic) Brownian motion assumption, and even 
then approximates it with a binomial distribution, the binomial lattice option pricing 
model provides a relatively close approximation to the expected present value for a 
variety of derivatives and underlying assets, for example early-exercise, path-dependent 
and log-normally distributed underlying derivatives.  It also serves as the basis of more 
elaborate option pricing algorithms, such as the trinomial tree.  In addition, this 
algorithm is an example of a 2D recurrence which also appears in many other 
algorithms, such as infinite impulse response filters and matrix factorization. 
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Measurement System Configuration 

Operating System Windows Server 2008 R2 Enterprise – Service Pack 1 

Processor Intel® Xeon® CPU X7560 @ 2.27Ghz (4 processors) 

Installed Memory (RAM) 64.0 GB  

System Type 64-bit Operating System 

Computer name Fxe32win02.amr.corp.intel.com 

Intel Compiler Intel(R) C++ Intel(R) 64 Compiler XE for applications running on Intel(R) 64, 
Version 12.10.233 Build 20110811 

Microsoft Compiler Microsoft Visual Studio 2010, Version 10.0.31118.1.SP1Rel 


