
On the value of vector level

parallelism

Robert Geva

1

Software and Services Group

Disclaimer

• Performance data shown here is preliminary

• It is work in progress

• Peer review still ongoing, conclusions may change

2

Software and Services Group

HW Resources for Parallel Execution

Vectors

Array Notations

SIMD loops

Auto Vec??

Tasks

Cilk, TBB, PPL

OpenMP

Auto Par??

X4

Y4

X4opY4

X3

Y3

X3opY3

X2

Y2

X2opY2

X1

Y1

X1opY1

0 127

Parallel tasks with SIMD kernels

Multiple
cores

Hardware
threads

SIMD
instructions

3

Software and Services Group

SIMD Instructions Compute Multiple

Operations per Instruction

3

256b Intel® Advanced Vector
Extensions (Intel® AVX)

X4

Y4

X4opY4

X3

Y3

X3opY3

X2

Y2

X2opY2

X1

Y1

X1opY1

0 127

X4

Y4

X4opY4

X3

Y3

X3opY3

X2

Y2

X2opY2

X1

Y1

X1opY1

128 255

Intel® Next Generation microarchitecture codename Sandy Bridge
256-bit Multiply + 256-bit ADD + 256-bit Load per clock…

Double your FLOPs with great energy-efficiency

4

Software and Services Group

SIMD Instructions Compute Multiple Operations

per Instruction

Intel® Many Integrated Core Architecture

X4

Y4

X4opY4

X3

Y3

X3opY3

X2

Y2

X2opY2

X1

Y1

X1opY1

0

X4

Y4

X4opY4

X3

Y3

X3opY3

X2

Y2

X2opY2

X1

Y1

X1opY1

255

X4

Y4

X4opY4

X3

Y3

X3opY3

X2

Y2

X2opY2

X1

Y1

X1opY1

X4

Y4

X4opY4

X3

Y3

X3opY3

X2

Y2

X2opY2

X1

Y1

X1opY1

512

Wide SIMD to support data parallel programming

4

5

Software and Services Group 5

Intel® Many Integrated Core Architecture
An Intel Co-Processor Architecture

VECTOR
IA CORE

INTERPROCESSOR NETWORK

INTERPROCESSOR NETWORK

F
I
X

E
D

 F
U

N
C

T
I
O

N
 L

O
G

I
C

M
E
M

O
R

Y
 a

n
d

 I
/

O
 I

N
T
E
R

F
A

C
E
S

VECTOR
IA CORE

VECTOR
IA CORE

VECTOR
IA CORE

VECTOR
IA CORE

VECTOR
IA CORE

VECTOR
IA CORE

VECTOR
IA CORE

COHERENT
CACHE

…

…
…

…

COHERENT
CACHE

COHERENT
CACHE

COHERENT
CACHE

COHERENT
CACHE

COHERENT
CACHE

COHERENT
CACHE

COHERENT
CACHE

Many Core and many, many core threads, wider vectors

Standard Intel® Architecture programming and memory model

6

Software and Services Group

Programmer Personalities

Different programmers want different
levels of control over how their

program executes

7

Software and Services Group

Programmer perspective vs. HW perspective

• Ability to program tasks vs. vectors explicitly

– Requirement to be able to program the vectors with a single

thread semantic guarantee

– Tasking is expressed at an outer level

– Have been burned by over subscription, don’t rely on

composability guarantees

• Ability to express intent for parallel execution and let

the compiler map to HW resources

– Parallel loops, utilize all HW resources

– Elemental functions, or SPMD execution model

– Implementation of these constructs with only cores is non

competitive

– Lower performance than other languages, e.g. OpenCL kernels

Data parallelism uses both cores and vectors

Therefore needs to compose with tasking

8

Software and Services Group

Currently Available

• Auto vectorizers

• Intrinsics

• Fortran

• OpenMP – coming soon

• OpenCL

9

Software and Services Group

Components of Intel® Cilk™ Plus

•Easy to learn, use and maintain, no programming overhead

•Execution of parallel code is equivalent to execution on a single thread

•Very low run time overhead

3 keywords for
tasking

•Provide local views of global data to allow reduction operation w/o data races

•No use of locks

•Can be used independent of program control flow
Hyper Objects

•Mathematical operations on arrays w/o constrained serial ordering

•Implementation utilizes the vector ISA Array notations

•Write standard C/C++ scalar

•Compiler generates a version to operate on a short vector of arguments

•The implementation can also spawn instances onto multiple cores

Elemental
Functions

•Write standard C/C++/FTN loops

•Guaranteed vector implementation by the compiler Pragma SIMD

10

Software and Services Group

Significance of vectorization - RTM stencil

1 2 4 8 16 32 64

Cilk 65.64 33.18 16.83 9.13 13.17 5.04 5.76

Cilk+vec 12.96 6.4 3.38 2.06 2.23 1.56 1.73

OpenCL 17.72 9.5 4.73 2.51 2.84 1.65 1.89

TBB 74.66 32.93 16.91 8.88 12.42 6.26 6.29

TBB+vec 17.49 8.64 4.38 2.29 2.78 1.81 2.09

• In both Cilk+vec and TBB+vec, significant speed up

over tasking alone, at all thread counts

• Without vectorizaiton, OpenCL (SPMD model) wins

over C++

11

Software and Services Group

And now with pictures

0

10

20

30

40

50

60

70

80

1 2 4 8 16 32 64

Cilk

Cilk+Cean

OpenCL

TBB

TBB+SIMD

0

1

2

3

4

5

6

7

T1 T2 T4 T8 T16 T32 T64

vect/cilk

vect/tbb

Significance of vectorization - AObench

Nthreads Cilk Cilk + simd improvement TBB TBB + simd improvement

1 18.93 13.9 0.734284 16.95 13.81 0.814749

2 9.07 6.83 0.753032 8.49 6.84 0.805654

4 4.66 3.37 0.723176 4.34 3.41 0.785714

8 2.12 1.81 0.853774 2.14 1.91 0.892523

16 1.71 1.35 0.789474 1.63 1.44 0.883436

32 0.81 0.7 0.864198 0.83 0.72 0.86747

64 0.6 0.52 0.866667 0.62 0.53 0.854839

Vector level parallelism provides significant improvement over thread level parallelism

Significance of vectorization – Binomial Lattice

Vector level parallelism provides significant improvement over thread level parallelism

nthreads cilk cilk + cean improvement

1 18.39 17.62 0.95812942

2 9.45 9.06 0.95873016

4 4.84 4.64 0.95867769

8 2.57 2.45 0.95330739

16 2.81 2.17 0.77224199

32 1.15 1.02 0.88695652

64 0.98 0.76 0.7755102

Significance of vectorization – Track Fitting

Vector level parallelism provides significant improvement over thread level parallelism

nthreads cilk cilk_simd opencl tbb tbb_simd

1 47.27 24.94 16.96 43.04 22.43

2 24.02 12.79 8.74 20.9 11.49

4 12.38 6.63 4.8 10.7 5.77

8 6.85 3.47 2.85 5.45 2.94

16 6.17 3.21 2.61 5.2 2.71

32 2.48 1.41 1.66 2.02 1.16

64 2.08 1.19 1.56 1.55 0.93

15

Software and Services Group

Array notations Example: Dot product

Serial version

float dot_product(unsigned int sz, float A[sz], float B[sz])

{

 int i;

 float dp=0.0f;

 for (i=0; i<size; i++) {

 dp += A[i] * B[i];

 }

 return dp;

}

Array Notation version

float dot_product(float A[], float B[])

{

 return __sec_reduce_add(A[:] * B[:]);

}

15

16

Software and Services Group

Elemental functions example: Black Scholes

Optimal utilization of cores and vectors

__declspec(vector)

double option_price_call_black_scholes(double S, double K,double r,double sigma, double
time)

{

 double time_sqrt = sqrt(time);

 double d1 = (log(S/K)+r*time)/(sigma*time_sqrt)+0.5*sigma*time_sqrt;

 double d2 = d1-(sigma*time_sqrt);

 return S*N(d1) - K*exp(-r*time)*N(d2);

}

cilk_for (int i=0; i < NUM_OPTIONS; i++) {
 call_serial[i] = option_price_call_black_scholes(S[i], K[i], r, sigma, time[i]);

}

17

Software and Services Group

Invoking Elemental Functions

Constrcut Example Semantics

Standard for loop for (j = 0; j < N; j++) {
 a[j] = my_ef(b[j]);
}

Single thread,
auto vectorization

#pragma simd #pragma simd
for (j = 0; j < N; j++) {
 a[j] = my_ef(b[j]);
}

Single thread,
Guaranteed to use the
vector version

cilk for loop cilk_for (j = 0; j < N; j++) {
 a[j] = my_ef(b[j]);
}

Both vectorization and
concurrent execution

Array notation a[:] = my_ef(b[:]); Vectorization.
Concurrency allowed
by not yet
implemented

The execution of the elemental functions is serial with respect to
the code that follows the invocation.

18

Software and Services Group

SIMD loop example: Mandelbrot

// vectorizable outer loop
#pragma simd
for (i=0; i<n; i++) {
 complex<float> c = a[i];
 complex<float> z = c;
 int j = 0;
 while ((j < 255)
 && (abs(z)< limit)) {
 z = z*z + c;
 j++;
 };
 color[i] = j;
}

•This program results in good
utilization of vector level
parallelism and provides
measureable speedups.

•Arguably out of reach of auto
vectorizers

•Outlining the loop body can
be written as an elemental
function. However, in line code
is normally more efficient.

INTEL CONFIDENTIAL

A simd loop

• Loops count number of elements that are

inside/outside Mandelbrot set

19 6/16/2012

 for (int32_t y = 0; y < ImageHeight; ++y) {
#pragma simd reduction(+:num_out) reduction(+:num_in)
 for(int32_t x = 0; x < ImageWidth; ++x) {
 if (count[y][x] < max_iter) {
 num_out += 1;
 }
 else {
 num_in += 1;
 }
 }
 }

20

Software and Services Group

Capabilities

• Uniform values – same across all vector lanes

• Linearly increasing values, inductive

• Reductions

• x += something  an induction, a reduction, other?

21

Software and Services Group

22

Software and Services Group

Legal Disclaimer
• INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE,

EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED
BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL® PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR
USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

• Intel may make changes to specifications and product descriptions at any time, without notice.

• All products, dates, and figures specified are preliminary based on current expectations, and are subject to
change without notice.

• Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which
may cause the product to deviate from published specifications. Current characterized errata are available
on request.

• Nehalem, Westmere, Sandy Bridge and other code names featured are used internally within Intel to
identify products that are in development and not yet publicly announced for release. Customers, licensees
and other third parties are not authorized by Intel to use code names in advertising, promotion or marketing
of any product or services and any such use of Intel's internal code names is at the sole risk of the user

• Performance tests and ratings are measured using specific computer systems and/or components and
reflect the approximate performance of Intel products as measured by those tests. Any difference in
system hardware or software design or configuration may affect actual performance.

• Intel, Core, Itanium and the Intel logo are trademarks of Intel Corporation in the United States and other
countries.

• *Other names and brands may be claimed as the property of others.

• Copyright © 2010 Intel Corporation.

23

Software and Services Group

Optimization Notice

6/16/2012 23

Intel® Composer XE 2011 includes compiler options that optimize for instruction sets that
are available in both Intel® and non-Intel microprocessors (for example SIMD instruction
sets), but do not optimize equally for non-Intel microprocessors. In addition, certain
compiler options for Intel® Composer XE 2011 are reserved for Intel microprocessors. For a
detailed description of these compiler options, including the instruction sets they implicate,
please refer to "Intel® Composer XE 2011 Documentation > Intel® C++ Compiler 12.0 User
and Reference Guides > Compiler Options." Many library routines that are part of Intel®
Composer XE 2011 are more highly optimized for Intel microprocessors than for other
microprocessors. While the compilers and libraries in Intel® Composer XE 2011 offer
optimizations for both Intel and Intel-compatible microprocessors, depending on the options
you select, your code and other factors, you likely will get extra performance on Intel
microprocessors.

While the paragraph above describes the basic optimization approach for Intel® Composer
XE 2011, with respect to Intel's compilers and associated libraries as a whole, Intel®
Composer XE 2011 may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include Intel® Streaming SIMD Extensions 2 (Intel® SSE2), Intel® Streaming
SIMD Extensions 3 (Intel® SSE3), and Supplemental Streaming SIMD Extensions 3 (Intel®
SSSE3) instruction sets and other optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on microprocessors not manufactured
by Intel. Microprocessor-dependent optimizations in this product are intended for use with
Intel microprocessors.

Intel recommends that you evaluate other compilers to determine which best meet your
requirements.

24

Software and Services Group

A Linear Argument

• An argument whose value increments linearly across the

projection

• When used as an index in loads and stores, linear

makes the difference between ld/st and gather / scatter

__declspec (vector (linear(i:1)))

void add_vec (int i)
{
 a[i] = b[i] + c[i];
}

for (int i = 0; i < N; ++i) {
 add_vec(i);

}

25

Software and Services Group

A Linear Argument

.B5.1: ; Preds .B5.0
 movdqu xmm1, XMMWORD PTR [_b+eax*4]
 movdqu xmm0, XMMWORD PTR [_c+eax*4]
 paddd xmm1, xmm0
 movdqu XMMWORD PTR [_a+eax*4], xmm1
 ret

push edi
movd eax, xmm0
pshuflw xmm1, xmm0, 238
punpckhqdq xmm0, xmm0
movd edx, xmm1
pshuflw xmm1, xmm0, 238
movd xmm3, DWORD PTR [_b+eax*4]
movd ecx, xmm0
movd edi, xmm1
movd xmm2, DWORD PTR [_b+edx*4]
punpcklqdq xmm3, xmm2
movd xmm2, DWORD PTR [_b+ecx*4]
movd xmm0, DWORD PTR [_b+edi*4]
punpcklqdq xmm2, xmm0
shufps xmm3, xmm2, 136
movd xmm1, DWORD PTR [_c+eax*4]
movd xmm2, DWORD PTR [_c+edx*4]
punpcklqdq xmm1, xmm2
movd xmm2, DWORD PTR [_c+ecx*4]
movd xmm0, DWORD PTR [_c+edi*4]
punpcklqdq xmm2, xmm0
shufps xmm1, xmm2, 136
paddd xmm3, xmm1
pshuflw xmm1, xmm3, 238
movd DWORD PTR [_a+eax*4], xmm3
punpckhqdq xmm3, xmm3
movd DWORD PTR [_a+edx*4], xmm1
movd DWORD PTR [_a+ecx*4], xmm3
pshuflw xmm3, xmm3, 238
movd DWORD PTR [_a+edi*4], xmm3
pop edi
ret

26

Software and Services Group

A Scalar Argument

• An argument whose value is the same for all lanes

• When used as a indexbase in loads and stores, scalar

makes the difference between ld/st and gather / scatter

__declspec (vector (linear(i:1)),scalar(a,b,c))

void add_vec (float *a, float *b, float *c, int i)
{
 a[i] = b[i] + c[i];
}

for (int i = 0; i < N; ++i) {

 add_vec(i);
}

27

Software and Services Group

A Scalar Argument

.B5.1: ; Preds .B5.0
 movups xmm1, XMMWORD PTR [ecx+edi*4]
 movups xmm0, XMMWORD PTR [edx+edi*4]
 addps xmm1, xmm0
 movups XMMWORD PTR [eax+edi*4], xmm1
 ret

.B2.1: ; Preds .B2.0
 push ebp
 mov ebp, esp
 and esp, -16
 sub esp, 32
 lea edx, DWORD PTR [1+eax]
 movaps XMMWORD PTR [16+esp], xmm6
 lea ecx, DWORD PTR [2+eax]
 movd xmm6, eax
 add eax, 3
 movaps XMMWORD PTR [esp], xmm7
 movd xmm3, edx
 punpcklqdq xmm6, xmm3
 movd xmm7, ecx
 movd xmm3, eax
 punpcklqdq xmm7, xmm3
 shufps xmm6, xmm7, 136
 pslld xmm6, 2
 paddd xmm1, xmm6
 paddd xmm2, xmm6
 movd edx, xmm1
 paddd xmm0, xmm6
 pshuflw xmm7, xmm1, 238
 punpckhqdq xmm1, xmm1
 movd ecx, xmm7
 movd eax, xmm1
 pshuflw xmm1, xmm1, 238
 movd xmm3, DWORD PTR [edx]
 movd edx, xmm1
 movd xmm7, DWORD PTR [ecx]
 punpcklqdq xmm3, xmm7
 movd xmm7, DWORD PTR [eax]
 movd xmm1, DWORD PTR [edx]
 movd ecx, xmm2
 punpcklqdq xmm7, xmm1
 shufps xmm3, xmm7, 136
 pshuflw xmm7, xmm2, 238
 punpckhqdq xmm2, xmm2
 movd eax, xmm7
 movd edx, xmm2
 pshuflw xmm2, xmm2, 238
 movd xmm1, DWORD PTR [ecx]
 movd ecx, xmm2
 movd xmm7, DWORD PTR [eax]
 punpcklqdq xmm1, xmm7
 movd xmm7, DWORD PTR [edx]
 movd xmm2, DWORD PTR [ecx]
 punpcklqdq xmm7, xmm2
 shufps xmm1, xmm7, 136
 movd eax, xmm0
 addps xmm3, xmm1
 pshuflw xmm6, xmm0, 238
 punpckhqdq xmm0, xmm0
 movd ecx, xmm0
 pshuflw xmm0, xmm0, 238
 movd DWORD PTR [eax], xmm3
 movd edx, xmm6
 movd eax, xmm0
 pshuflw xmm1, xmm3, 238
 punpckhqdq xmm3, xmm3
 pshuflw xmm0, xmm3, 238
 movaps xmm6, XMMWORD PTR [16+esp]
 movaps xmm7, XMMWORD PTR [esp]
 movd DWORD PTR [edx], xmm1
 movd DWORD PTR [ecx], xmm3
 movd DWORD PTR [eax], xmm0
 mov esp, ebp
 pop ebp
 ret

28

Software and Services Group

Vector Length

•How many elements should be

processed in each invocation
–The “vector length”

•The VL needs to be determined

independently and consistently at

the call sites and at the definition.

•Default: size of HW register / size

of return type

•What if: size of return type ≠ size

of prevalently used type inside the

function

__declspec (vector)
float add_vec (float x, float y)
{

 return x+y;
}

__declspec(vector)
double add_vec(double x, double y)
{
 return x+y;
}

__declspec (vector)
double add_vec (double x, double y)
{

 return sinf((float) x)
 +sinf((float) y);

}

29

Software and Services Group

Track Fitting

• Track finding involves associating a set of readings with the likely trajectory
of a specific particle. Track fitting then takes those sets and determines a
particle’s position, direction and the magnitude of its momenta at any time
by fitting the readings to a mathematical description of the trajectory.

• A charged particle moving in a homogeneous magnetic field experiences a
sideways force (the Lorentz force) proportional to the strength of the
magnetic field, the component of the velocity that is perpendicular to the
magnetic field and the charge of the particle. In this way, the trajectory

• such a particle follows is helical along an axis parallel to the direction of
the magnetic field.

• This perfectly helical behaviour is a simplification, as the magnetic field is
rarely homogeneous, which deforms the helix. Also, as the particle moves,
it is subject to multiple Coulomb scattering, which introduces variances in
the momentum and makes the helical trajectory less crisp.

• Finally, the particle loses energy as it moves, and correspondingly the
radius of the helix it describes contracts.

30

Software and Services Group

RTM Stencil
Description

Stencil computation is the basis for the reverse time migration algorithm in seismic
computing. The underlying mathematical problem is to solve the wave equation using
finite difference method. This benchmark computes a 25-point 3D stencil.

Mathematical Details

It’s essentially a 3D convolution with a small compact operator. It’s quite stable
numerically.

Pseudocode

void loop_stencil(int t0, int t1, int x0, int x1, int y0, int y1, int z0, int z1)

{

 // March forward in time

 for(int t = t0; t < t1; ++t) {

 // March over 3D Cartesian grid

 for xyz in [x0,x1)[y0,y1)[z0,z1] do {

 A’[xyz] = 25-point stencil applied to A, centered at point xyz.

 }

 }

}

31

Software and Services Group

AOBench

AOBench is a popular visual compute benchmark that has
been ported to dozens of programming models across
dozens of platforms. Although not truly representative as a
contemporary real time rendering approach, AOBench’s per
pixel computations, ray casting, and object intersection
tests, are quite similar to the computations often performed
in advanced pixel shaders of high performance real time
rendering engines.

Computationally, AOBench can be described as a simple
ray trace kernel applied to a fixed test scene of 3 spheres
and 1 plane. For each primary ray that intersects an object,
a simple ambient occlusion approximation is computed by
random ray casting back into the scene.

32

Software and Services Group

Binomial Lattice
Option pricing is the problem of computing the expected present value of a financial
instrument (most usually stocks, but also interest rates, foreign exchange rates, bonds,
etc). This is based on a forecast of cashflows over a specific time horizon. The expected
present value is used to determine the fair premium of an option on that instrument.

The binomial (tree or lattice) option pricing model is a confluent discretization of a
Brownian motion process. Note that for a large number of steps the binomial
distribution approximates a Gaussian distribution. The discretization takes the form of
a recombinant tree, where each level of the tree represents the set of values the
underlying can take at specific points in time in the lifetime of the option.

The dataflow of this algorithm is shown in the figure to the left, and pseudocode is given
in the next section. Values at the base of the lattice are computed first, and then
propagated up the lattice. The expected present value is computed in the topmost node.

Although this algorithm uses the (simplistic) Brownian motion assumption, and even
then approximates it with a binomial distribution, the binomial lattice option pricing
model provides a relatively close approximation to the expected present value for a
variety of derivatives and underlying assets, for example early-exercise, path-dependent
and log-normally distributed underlying derivatives. It also serves as the basis of more
elaborate option pricing algorithms, such as the trinomial tree. In addition, this
algorithm is an example of a 2D recurrence which also appears in many other
algorithms, such as infinite impulse response filters and matrix factorization.

33

Software and Services Group

Measurement System Configuration

Operating System Windows Server 2008 R2 Enterprise – Service Pack 1

Processor Intel® Xeon® CPU X7560 @ 2.27Ghz (4 processors)

Installed Memory (RAM) 64.0 GB

System Type 64-bit Operating System

Computer name Fxe32win02.amr.corp.intel.com

Intel Compiler Intel(R) C++ Intel(R) 64 Compiler XE for applications running on Intel(R) 64,
Version 12.10.233 Build 20110811

Microsoft Compiler Microsoft Visual Studio 2010, Version 10.0.31118.1.SP1Rel

